The state of Pb-free solder — A joint reliability overview

Author(s):  
Vasu Vasudevan ◽  
Tanner Schulz ◽  
Min Pei ◽  
F. Toth ◽  
A. E. Lucero ◽  
...  
2004 ◽  
Vol 33 (12) ◽  
pp. 1507-1515 ◽  
Author(s):  
J. Liang ◽  
S. Downes ◽  
N. Dariavach ◽  
D. Shangguan ◽  
S. M. Heinrich

Author(s):  
Shi-Wei Ricky Lee ◽  
Yin-Lai Tracy Li ◽  
Hoi-Wai Ben Lui

The present study is intended to investigate the board level solder joint reliability of PBGA assemblies under mechanical drop test. During the course of this study, a five-leg experiment was designed to investigate various combinations of solder materials and peak reflow temperatures. Two major failure modes, namely, solder cracking and copper trace breakage, were identified. In addition, the critical location of solder joints was characterized. It was found that Sn-Pb eutectic solder joints performed better than Pb-free solder joints under mechanical impact loading.


Author(s):  
Deepak Manjunath ◽  
Satyanarayan Iyer ◽  
Shawn Eckel ◽  
Purushothaman Damodaran ◽  
Krishnaswami Srihari

Fine pitch leadless components, such as Ball Grid Arrays (BGAs) and Chip-Scale Packages (CSPs), are increasingly used in modern day circuitry to aid miniaturization. Assembling these surface mount components using lead-free solder pastes has been a subject of interest for the past several years. Reworking a BGA is complicated as the solder joints are hidden underneath the component. The process window available for the rework process is very narrow and there are number of other critical factors, which complicate and affect the repeatability of the rework process. Consequently, the primary objective of this research endeavor is to develop a reliable and a repeatable process to rework lead-free fine pitch BGAs. The process steps to rework a BGA are component removal, site redressing, solder paste/flux deposition, component replacement and reflow. This experimental study evaluates a number of alternatives for several rework process steps during the course of developing a reliable and repeatable rework process. Two alternatives for site redressing namely, (i) copper wick with soldering iron, and (ii) vacuum de-soldering methods are evaluated. Similarly the application of solder paste versus gel flux is compared. A localized reflow method for replacing the component at the SRT machine is developed and it is compared with forced convection in reflow oven. The pros and cons of using the two reflow methods and the effect of multiple reflows on solder joint reliability is discussed in the paper. A reliability study was conducted on the samples and the results are presented to compare the various alternatives.


Author(s):  
Weidong Xie ◽  
Mudasir Ahmad

Solder joint reliability of Pb-free ball grid array (BGA) components, one of the most commonly used microelectronic devices, is one of the major concerns in product development and qualification. Accelerated Thermal Cycling (ATC) testing, though very time consuming and costly, remains the most prevalent means to evaluate solder joint reliability under certain end-use conditions. Wherever the test results are not readily available, a fine-tuned and well-benchmarked modeling methodology is of significance in producing quick-turn judgments and risk assessments to expedite product development. The two most critical elements in simulating solder joint reliability are 1) the solder constitutive equations, which describe the solder creep behavior under different working conditions, and 2) the fatigue model which ties the damage index from finite element modeling together with the experimental results. In this study, a novel approach has been explored in which the constants of the constitutive equation and fatigue model for Sn-based Pb-free solder joints were derived inversely based on ATC results of a ceramic BGA test vehicle. In order to cover the typical end-use conditions of the targeted products, the test vehicle was assembled onto PCBs with two different thicknesses and then thermal cycled under three different temperature profiles. The basic idea was that all of the constants, both for the constitutive equation and the fatigue life prediction model, were initially given as a range. Then by utilizing modeFrontier®, a multi-objective optimization software, the finite-element model was coupled with the virtual optimization algorithm to derive simultaneously all the constants that yielded the best fatigue life predictions compared to the test results. To simplify the problem without compromising the generality, a hyperbolic sine creep constitutive equation and Coffin-Manson fatigue model were selected in the analysis. There were a total of 6 constants to be determined; the initial ranges of the constants were defined by fitting the creep experimental data for a variety of Sn-based solder materials. Available in other publications, the selected solder materials cover a wide range of both Ag and Cu content which therefore represent the typical behavior of the most commonly adopted solder materials by the industry. To reduce the computational cost and enable fast convergence of multiple-generation iterations required by the multiple objective optimization algorithms, a very-well benchmarked submodel has been employed. Furthermore, by utilizing ANSYS® high performance computing (HPC) capability and cloud computing, the computational time was reduced significantly. An overall good correlation was achieved between the fatigue life prediction using the constants derived by this approach and the test characteristic life.


Sign in / Sign up

Export Citation Format

Share Document