scholarly journals Reconstruction of the human hippocampus in 3D from histology and high-resolution ex-vivo MRI

Author(s):  
Daniel H. Adler ◽  
Alex Yang Liu ◽  
John Pluta ◽  
Salmon Kadivar ◽  
Sylvia Orozco ◽  
...  
2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Hirofumi Fujii ◽  
Masayuki Yamaguchi ◽  
Kazumasa Inoue ◽  
Yasuko Mutou ◽  
Masashi Ueda ◽  
...  

Purpose. We aimed to clearly visualize heterogeneous distribution of hypoxia-inducible factor 1α(HIF) activity in tumor tissuesin vivo.Methods. We synthesized of125I-IPOS, a125I labeled chimeric protein probe, that would visualize HIF activity. The biodistribution of125I-IPOS in FM3A tumor-bearing mice was evaluated. Then, the intratumoral localization of this probe was observed by autoradiography, and it was compared with histopathological findings. The distribution of125I-IPOS in tumors was imaged by a small animal SPECT/CT scanner. The obtainedin vivoSPECT-CT fusion images were compared withex vivoimages of excised tumors. Fusion imaging with MRI was also examined.Results.125I-IPOS well accumulated in FM3A tumors. The intratumoral distribution of125I-IPOS by autoradiography was quite heterogeneous, and it partially overlapped with that of pimonidazole. High-resolution SPECT-CT fusion images successfully demonstrated the heterogeneity of125I-IPOS distribution inside tumors. SPECT-MRI fusion images could give more detailed information about the intratumoral distribution of125I-IPOS.Conclusion. High-resolution SPECT images successfully demonstrated heterogeneous intratumoral distribution of125I-IPOS. SPECT-CT fusion images, more favorably SPECT-MRI fusion images, would be useful to understand the features of heterogeneous intratumoral expression of HIF activityin vivo.


2004 ◽  
Vol 12 (8) ◽  
pp. 614-626 ◽  
Author(s):  
Danika L. Batiste ◽  
Alexandra Kirkley ◽  
Sheila Laverty ◽  
Lisa M.F. Thain ◽  
Alison R. Spouge ◽  
...  

2004 ◽  
Vol 18 (2) ◽  
pp. 80-87 ◽  
Author(s):  
Archie Heddings ◽  
Mehmet Bilgen ◽  
Randolph Nudo ◽  
Bruce Toby ◽  
Terence McIff ◽  
...  

Objectives. It is widely accepted that peripheral nerve repairs performed within 6 weeks of injury have much better outcomes than those performed at later dates. However, there is no diagnostic technique that can determine if a traumatic peripheral nerve injury requires surgical intervention in the early postinjury phase. The objective of this article was to determine whether novel, noninvasive magnetic resonance imaging techniques could demonstrate the microstructure of human peripheral nerves that is necessary for determining prognosis and determining if surgery is indicated following traumatic injury. Methods. Ex vivo magnetic resonance imaging protocols were developed on a 9.4-T research scanner using spin-echo proton density and gradient-echo imaging sequences and a specially designed, inductively coupled radio frequency coil. These imaging protocols were applied to in situ imaging of the human median nerve in 4 fresh-frozen cadaver arms. Results. Noninvasive high-resolution images of the human median nerve were obtained. Structures in the nerve that were observed included fascicles, interfascicular epineurium, perineurium, and intrafascicular septations. Conclusion. Application of these imaging techniques to clinical scanners could provide physicians with a tool that is capable of grading the severity of nerve injuries and providing indications for surgery in the early postinjury phase.


2013 ◽  
Vol 82 (2) ◽  
pp. 264-269 ◽  
Author(s):  
Matthias Dettmer ◽  
Nicola Glaser-Gallion ◽  
Paul Stolzmann ◽  
Florian Glaser-Gallion ◽  
Juergen Fornaro ◽  
...  

2018 ◽  
Vol 44 (12) ◽  
pp. 1862-1866 ◽  
Author(s):  
Elen de Souza Tolentino ◽  
Pablo Andrés Amoroso-Silva ◽  
Murilo Priori Alcalde ◽  
Heitor Marques Honório ◽  
Lilian Cristina Vessoni Iwaki ◽  
...  

2021 ◽  
Vol 42 (Supplement_1) ◽  
Author(s):  
S Glatstein ◽  
M Ghiringhelli ◽  
L Maizels ◽  
E Heller ◽  
E Maor ◽  
...  

Abstract Background One of the major barriers to an improved mechanistic understanding of atrial fibrillation (AF), and thus in the pipeline of drug development, has been a lack of appropriate tissue models, especially in small animals. Aim We propose an advanced anatomical ex-vivo model based on rat atria for acute assessment of AF susceptibility. This novel model could yield a better understanding of arrhythmia mechanisms as well as the development of potential therapeutic strategies for the prevention or termination of atrial arrhythmias. Methods Wistar rats atria (N=25) were isolated, flattened and pinned to a custom-made silicon plate. Atria were superfused with an oxygenized Tyrode's solution. Tissues were then loaded with a voltage-sensitive dye and mapped using a high-resolution optical mapping system. AF was induced with 1uM carbamylcholine (N=23) coupled with pacing maneuvers and treated with 30uM Vernakalant (N=10) or 10uM Flecainide (N=10). Finally, the feasibility of a new ablation technique (electroporation) was evaluated. Results Optical mapping results suggested that the superfusion procedure led to a fast atrial recovery. Sinus activity was conserved for all atria for a long period. All the anatomical landmarks were clearly visualized. The acquired optical signals were analyzed during sinus rhythm and pacing, which allowed the creation of detailed activation maps and measurements of action potential duration (APD) and conduction velocity (CV) at different pacing rates. The resulting APD restitution curves revealed electrical excitation at high pacing rates (cycle length between 50ms and 300ms) with a relatively flattened curve. AF was successfully induced and optically mapping confirmed the presence of reentrant activity. AF was successfully treated using Vernacalant and Flecainide. Finally, we demonstrated the feasibility of a new ablation approach (electroporation) for creation of a continuous linear lesion serving as a functional block. Conclusion The isolated superfused atria model, coupled with voltage-sensitive dyes, can be utilized for long-term high-resolution functional imaging of the atria during sinus rhythm, pacing and arrhythmogenic activity. This allows the study of the atrial electrophysiological properties, the mechanisms involved in AF initiation, perpetuation, and termination as well as the study of drug and new ablation modalities. FUNDunding Acknowledgement Type of funding sources: Public grant(s) – EU funding. Main funding source(s): European Research Council (ERC) Spontaneous activation of isolated atria


Sign in / Sign up

Export Citation Format

Share Document