Smart configurable wireless sensors and actuators for industrial monitoring and control

Author(s):  
Asad M. Madni
Sensors ◽  
2019 ◽  
Vol 19 (17) ◽  
pp. 3643 ◽  
Author(s):  
Abba ◽  
Namkusong ◽  
Lee ◽  
Crespo

Irrigation systems are becoming increasingly important, owing to the increase in human population, global warming, and food demand. This study aims to design a low-cost autonomous sensor interface to automate the monitoring and control of irrigation systems in remote locations, and to optimize water use for irrigation farming. An internet of things-based irrigation monitoring and control system, employing sensors and actuators, is designed to facilitate the autonomous supply of adequate water from a reservoir to domestic crops in a smart irrigation systems. System development lifecycle and waterfall model design methodologies have been employed in the development paradigm. The Proteus 8.5 design suite, Arduino integrated design environment, and embedded C programming language are commonly used to develop and implement a real working prototype. A pumping mechanism has been used to supply the water required by the soil. The prototype provides power supply, sensing, monitoring and control, and internet connectivity capabilities. Experimental and simulation results demonstrate the flexibility and practical applicability of the proposed system, and are of paramount importance, not only to farmers, but also for the expansion of economic activity. Furthermore, this system reduces the high level of supervision required to supply irrigation water, enabling remote monitoring and control.


2012 ◽  
Vol 1 (2) ◽  
pp. 123-152 ◽  
Author(s):  
Pouria Zand ◽  
Supriyo Chatterjea ◽  
Kallol Das ◽  
Paul Havinga

2013 ◽  
Vol 787 ◽  
pp. 978-981
Author(s):  
Sen Mao Huang ◽  
Guang You Yang ◽  
Zhi Yan Ma ◽  
Zheng Zhang

ZigBee technology is more and more used in complex and bad industrial monitoring and control environment. At the same time, ZigBee nodes are usually powered by batteries, so prolonging the working time and reducing the power consumption of the nodes is very important. If the wireless nodes can turn into sleep mode in spare time of communication, it will further reduce the node power consumption. But in sleep period, the node can't communication with other node, we need to synchronous awaken and dormancy, so precise time synchronization for wireless sensor network application is particularly important. This paper will apply FTSP algorithm in the ZigBee network and realize the network time synchronization. At the same time, it doesn't increase power consumption of the network.


Author(s):  
L. VENKATESAN ◽  
A.D. JANARTHANAN ◽  
S. GOWRISHANKAR ◽  
R. ARULMOZHIYAL

Today's Industrial Control Applications are done by Remote Process only. Lab VIEW Software plays major role in Industrial Monitoring and control systems. In this paper i am going to discuss about Lab View based induction motor drive control system. It is One of the most common applications required in remote control and monitoring. Drive control system has various types of controller, in order to perform some actions such as control the speed, forward and reverse turning direction of the motor. This approach can be done by Lab VIEW programming, and with the rise of the technology, Ethernet module will be used in order to achieve the remote control system. Lab VIEW is a human machine interfaces design software that is user friendly. It can be easily communicate with different hardware.


2020 ◽  
Vol 2020 ◽  
pp. 1-12 ◽  
Author(s):  
Muhammad Mostafa Monowar ◽  
Mohammed Basheri

The rapid proliferation of low-power wireless devices enables the industrial users to improve the productivity and safety of the plants as well as efficient management of the system. This can be achieved through significant increase in data collection, remote monitoring, and control of the plants and promoting the development of industrial Internet of Things (IoT) applications. However, the industrial environment is typically harsh causing high link quality variations and topology changes. The wireless devices used in this environment are also resource constrained in terms of energy, memory, and processing power. In spite of their low-power and lossy nature, these networks demand provisioning of differentiated services for various industrial applications having diverse quality of service (QoS) requirements. Considering the unique characteristics of low-power and lossy networks (LLN), routing for low-power and lossy networks (RPL) is devised which was standardized by IETF in 2012. To meet the demand of diverse traffic, RPL supports multiple instances in a single network. This paper proposes MI-RPL, a multi-instance solution of RPL for industrial low-power and lossy networks (LLNs). MI-RPL defines four instances for four distinct traffic classes of industrial monitoring applications in terms of delay and reliability. MI-RPL also introduces composite routing metrics and proposes an objective function (OF) to compute the most suitable path for each instance. The performance of MI-RPL is investigated through simulations that exhibit MI-RPL has better delay and packet delivery performance for delay- and reliability-constrained traffic along with lower energy consumption compared to the standard RPL.


Sign in / Sign up

Export Citation Format

Share Document