scholarly journals LABVIEW SIMULATION FOR SPEED CONTROL OF INDUCTION MOTOR

Author(s):  
L. VENKATESAN ◽  
A.D. JANARTHANAN ◽  
S. GOWRISHANKAR ◽  
R. ARULMOZHIYAL

Today's Industrial Control Applications are done by Remote Process only. Lab VIEW Software plays major role in Industrial Monitoring and control systems. In this paper i am going to discuss about Lab View based induction motor drive control system. It is One of the most common applications required in remote control and monitoring. Drive control system has various types of controller, in order to perform some actions such as control the speed, forward and reverse turning direction of the motor. This approach can be done by Lab VIEW programming, and with the rise of the technology, Ethernet module will be used in order to achieve the remote control system. Lab VIEW is a human machine interfaces design software that is user friendly. It can be easily communicate with different hardware.

Author(s):  
Gaurav V. Barmase ◽  
Gaurav V. Khopade ◽  
Shital P. Thawkar ◽  
Sahil P. Bawankule ◽  
Nikhil D. Gajbhiye ◽  
...  

The main aim of this project is to develop a Graphical User Interface (GUI) based system to monitor and control the industrial process. The proposed protocol os user-friendly and it is more efficient due to the incorporation of a simple GUI. Moreover, the proposed system is installed to collect the valuable information.


2014 ◽  
Vol 1044-1045 ◽  
pp. 755-758
Author(s):  
Xin Hui Yang

This paper provides a design for a PLC-based, variable-frequency governing, pressure-constant, automatic water-supply control system. This design is based on the current situations at the water supply plants found in small and medium cities in China. In this control system, the pressure signal across the pipe network is acquired by pressure sensors and then transmitted to PID modules in the PLC in order to control switching between pump motors. At the same time, the PLC is connected with a personal computer for industrial control purposes. On this computer, monitoring and control software has been installed in order to monitor and control the pressure-constant water-supply system on a real-time basis.


Energies ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 218
Author(s):  
Mohammed Alghassab

Monitoring and control systems in the energy sector are specialized information structures that are not governed by the same information technology standards as the rest of the world’s information systems. Such industrial control systems are also used to handle important infrastructures, including smart grids, oil and gas facilities, nuclear power plants, water management systems, and so on. Industry equipment is handled by systems connected to the internet, either via wireless or cable connectivity, in the present digital age. Further, the system must work without fail, with the system’s availability rate being of paramount importance. Furthermore, to certify that the system is not subject to a cyber-attack, the entire system must be safeguarded against cyber security vulnerabilities, threats, and hazards. In addition, the article looks at and evaluates cyber security evaluations for industrial control systems, as well as their possible impact on the accessibility of industrial control system operations in the energy sector. This research work discovers that the hesitant fuzzy-based method of the Analytic Hierarchy Process (AHP) and the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) is an operational procedure for estimating industrial control system cyber security assessments by understanding the numerous characteristics and their impacts on cyber security industrial control systems. The author evaluated the outputs of six distinct projects to determine the quality of the outcomes and their sensitivity. According to the results of the robustness analysis, alternative 1 shows the utmost effective cybersecurity project for the industrial control system. This research work will be a conclusive reference for highly secure and managed monitoring and control systems.


2012 ◽  
Vol 468-471 ◽  
pp. 848-851
Author(s):  
Peng Zhang ◽  
Min De Shen

One kind of the reservoir gate monitoring and control system is developed, which is based on the operator station, remote control station, programmable logic controller and industrial network, to build a distributed networked control system. In this system, the position of the gate’s displacement is measured by a rotary coder that provides a Profibus-DP interface, and the reliability is enhanced. The communication program between the rotary coder and the controller is listed.


2014 ◽  
Vol 484-485 ◽  
pp. 348-352
Author(s):  
Fang Wang ◽  
Chang Liu ◽  
Li Lin

Now computer terminals, communication control, and network technology continues rapidly developed, the rapidly expanding range of information exchange, has been covering the field device to the control and management at all levels of networking, industrial control monitoring is not only limited to on-site monitoring, on-site scheduling. The development of industrial monitoring control system is a history of development of centralized monitoring and control to the network monitoring control. The previous system, the various important instruments status were monitored by the large-scale instruments.


2020 ◽  
Vol 1 (1) ◽  
pp. 15-20
Author(s):  
Ta'ali Ta'ali ◽  
Fivia Eliza

The SCADA-based AC motor monitoring and control system is a three-phase induction motor monitoring and control system. Motor speed regulation feedback is obtained from the tacho generator which is connected to the pulleys. The SCADA program manages inverter and microcontroller communications so that the process of monitoring the speed of an induction motor is done through a computer. Induction motor speed regulation using VSD as an inverter functions to adjust the source frequency so that the motor speed can be adjusted. Communication between VSD, PLC and SCADA uses the MODBUS protocol to monitor the performance of the induction motor. The main equipment uses ATV12HU22M3 inverter and CQM1H PLC. The CX-Programmer and CIMON software function to manage and monitor in real time the system. The results of the induction motor settings can be adjusted with VSD speeds ranging from 0-50 Hz. PLC as master control and SCADA function as distance controller.


2021 ◽  
Author(s):  
Kota P.N. ◽  
Chandak A.S. ◽  
Patil B.P.

Abstract Industry 4.0 makes manufacturers more vulnerable to current challenges and makes it easier to adapt to market changes. This will increase the speed of innovation, make it more customer-oriented and lead to faster design processes. It is essential to focus on monitoring and controlling the production system before complex accidents occur. Moreover, an industrial control system facing information security problems in recent times because of the nature of IoT which affects the evaluation of abnormal predication. To overcome above research gaps, we shift to industrial 4.0 which combine IoT and mechanism learning for industrial monitor and manage. We propose a hybrid machine learning technique for IoT enabled industrial monitoring and control system (IoT-HML). Here, we concentrate both information security issues with accurate monitoring and control system. The first section of proposed IoT-HML system is to introduce the cat induced wheel optimization (IWO) algorithm for cluster formation. The process consists of clustering and cluster head (CH) selection. The source node forward information to destination through CH only which avoids the unwanted data loss and improve the security, because the information travel through trusted path. For route selection process, we utilize the cuckoo search algorithm to compute the optimal best path among multiples. In second section, we illustrate a coach and player learned neural network (CP-LNN) for monitoring the industrial and prevent from accidents by basic control strategies. Finally, the proposed IoT-HML system can evaluate with different set of data’s to prove the effectiveness.


Sensors ◽  
2019 ◽  
Vol 19 (15) ◽  
pp. 3316 ◽  
Author(s):  
Marouane Salhaoui ◽  
Antonio Guerrero-González ◽  
Mounir Arioua ◽  
Francisco J. Ortiz ◽  
Ahmed El Oualkadi ◽  
...  

Unmanned aerial vehicles (UAVs) are now considered one of the best remote sensing techniques for gathering data over large areas. They are now being used in the industry sector as sensing tools for proactively solving or preventing many issues, besides quantifying production and helping to make decisions. UAVs are a highly consistent technological platform for efficient and cost-effective data collection and event monitoring. The industrial Internet of things (IIoT) sends data from systems that monitor and control the physical world to data processing systems that cloud computing has shown to be important tools for meeting processing requirements. In fog computing, the IoT gateway links different objects to the internet. It can operate as a joint interface for different networks and support different communication protocols. A great deal of effort has been put into developing UAVs and multi-UAV systems. This paper introduces a smart IIoT monitoring and control system based on an unmanned aerial vehicle that uses cloud computing services and exploits fog computing as the bridge between IIoT layers. Its novelty lies in the fact that the UAV is automatically integrated into an industrial control system through an IoT gateway platform, while UAV photos are systematically and instantly computed and analyzed in the cloud. Visual supervision of the plant by drones and cloud services is integrated in real-time into the control loop of the industrial control system. As a proof of concept, the platform was used in a case study in an industrial concrete plant. The results obtained clearly illustrate the feasibility of the proposed platform in providing a reliable and efficient system for UAV remote control to improve product quality and reduce waste. For this, we studied the communication latency between the different IIoT layers in different IoT gateways.


2014 ◽  
Vol 721 ◽  
pp. 486-489
Author(s):  
Yong Li ◽  
Xiao Dong Ding ◽  
Yu Ting Li

The electrical monitoring is the most important part of industrial production, with industrial production situation of increasingly complex, also more and more high to the requirement of wireless industrial monitoring and control system. In this context strengthen monitoring system based on ZigBee wireless industry research is of great significance. Wireless electric monitoring system based on ZigBee has more advantages compared with traditional wireless monitoring technology. To strengthen the research of this technique is a necessary choice to meet the requirements of the actual industrial production. This article will revolve around ZigBee technology to explore how to enhance the level of electrical control system.


Sign in / Sign up

Export Citation Format

Share Document