scholarly journals On Providing Differentiated Service Exploiting Multi-Instance RPL for Industrial Low-Power and Lossy Networks

2020 ◽  
Vol 2020 ◽  
pp. 1-12 ◽  
Author(s):  
Muhammad Mostafa Monowar ◽  
Mohammed Basheri

The rapid proliferation of low-power wireless devices enables the industrial users to improve the productivity and safety of the plants as well as efficient management of the system. This can be achieved through significant increase in data collection, remote monitoring, and control of the plants and promoting the development of industrial Internet of Things (IoT) applications. However, the industrial environment is typically harsh causing high link quality variations and topology changes. The wireless devices used in this environment are also resource constrained in terms of energy, memory, and processing power. In spite of their low-power and lossy nature, these networks demand provisioning of differentiated services for various industrial applications having diverse quality of service (QoS) requirements. Considering the unique characteristics of low-power and lossy networks (LLN), routing for low-power and lossy networks (RPL) is devised which was standardized by IETF in 2012. To meet the demand of diverse traffic, RPL supports multiple instances in a single network. This paper proposes MI-RPL, a multi-instance solution of RPL for industrial low-power and lossy networks (LLNs). MI-RPL defines four instances for four distinct traffic classes of industrial monitoring applications in terms of delay and reliability. MI-RPL also introduces composite routing metrics and proposes an objective function (OF) to compute the most suitable path for each instance. The performance of MI-RPL is investigated through simulations that exhibit MI-RPL has better delay and packet delivery performance for delay- and reliability-constrained traffic along with lower energy consumption compared to the standard RPL.

Sensors ◽  
2020 ◽  
Vol 20 (22) ◽  
pp. 6542
Author(s):  
Thiago C. Jesus ◽  
Paulo Portugal ◽  
Daniel G. Costa ◽  
Francisco Vasques

In critical industrial monitoring and control applications, dependability evaluation will be usually required. For wireless sensor networks deployed in industrial plants, dependability evaluation can provide valuable information, enabling proper preventive or contingency measures to assure their correct and safe operation. However, when employing sensor nodes equipped with cameras, visual coverage failures may have a deep impact on the perceived quality of industrial applications, besides the already expected impacts of hardware and connectivity failures. This article proposes a comprehensive mathematical model for dependability evaluation centered on the concept of Quality of Monitoring (QoM), processing availability, reliability and effective coverage parameters in a combined way. Practical evaluation issues are discussed and simulation results are presented to demonstrate how the proposed model can be applied in wireless industrial sensor networks when assessing and enhancing their dependability.


2020 ◽  
Vol 26 (11) ◽  
pp. 1366-1381
Author(s):  
Sathishkumar Natesan ◽  
Rajakumar Krishnan

The Routing Protocol for Low Power and Lossy Networks (RPL) is operated by gadgets comprised of many devices of embedded type with limited energy, memory as well as resources that do their process. The improvements in the life of the network and energy conservation are the key challenging features in Low Power and Lossy Networks (LLN). Obviously, the LLN has a key strategic part in routing. The Internet of Things (IoT) device is expected to make the apt choice. In LLN, the poor routing choice leads to traffic congestion, reduction in power as well as packet loss ratio. The task in the proposal analyzes Delay (D), Load (L) and Battery Discharge Index (BDI) pivoted Energy Efficient Composite Metric Routing (EECMR) protocol for LLN. The performance of the work in the proposal is evaluated by the COOJA simulator. It outperforms with respect to Network Lifetime (NL), Delay as well as Packet Delivery Ratio (PDR) contrasted to the routing metrics like Traffic Load (TL), Link Quality (LQ), Residual Energy (RE), RE-Battery Discharge Index (RE-BDI) and Hop Count (HC).


Author(s):  
Dominik Scholtes ◽  
Stefan Seelecke ◽  
Gianluca Rizzello ◽  
Paul Motzki

Abstract Within industrial manufacturing most processing steps are accompanied by transporting and positioning of workpieces. The active interfaces between handling system and workpiece are industrial grippers, which often are driven by pneumatics, especially in small scale areas. On the way to higher energy efficiency and digital factories, companies are looking for new actuation technologies with more sensor integration and better efficiencies. Commonly used actuators like solenoids and electric engines are in many cases too heavy and large for direct integration into the gripping system. Due to their high energy density shape memory alloys (SMA) are suited to overcome those drawbacks of conventional actuators. Additionally, they feature self-sensing abilities that lead to sensor-less monitoring and control of the actuation system. Another drawback of conventional grippers is their design, which is based on moving parts with linear guides and bearings. These parts are prone to wear, especially in abrasive environments. This can be overcome by a compliant gripper design that is based on flexure hinges and thus dispenses with joints, bearings and guides. In the presented work, the development process of a functional prototype for a compliant gripper driven by a bistable SMA actuation unit for industrial applications is outlined. The focus lies on the development of the SMA actuator, while the first design approach for the compliant gripper mechanism with solid state joints is proposed. The result is a working gripper-prototype which is mainly made of 3D-printed parts. First results of validation experiments are discussed.


2012 ◽  
Vol 1 (2) ◽  
pp. 123-152 ◽  
Author(s):  
Pouria Zand ◽  
Supriyo Chatterjea ◽  
Kallol Das ◽  
Paul Havinga

2013 ◽  
Vol 787 ◽  
pp. 978-981
Author(s):  
Sen Mao Huang ◽  
Guang You Yang ◽  
Zhi Yan Ma ◽  
Zheng Zhang

ZigBee technology is more and more used in complex and bad industrial monitoring and control environment. At the same time, ZigBee nodes are usually powered by batteries, so prolonging the working time and reducing the power consumption of the nodes is very important. If the wireless nodes can turn into sleep mode in spare time of communication, it will further reduce the node power consumption. But in sleep period, the node can't communication with other node, we need to synchronous awaken and dormancy, so precise time synchronization for wireless sensor network application is particularly important. This paper will apply FTSP algorithm in the ZigBee network and realize the network time synchronization. At the same time, it doesn't increase power consumption of the network.


Sign in / Sign up

Export Citation Format

Share Document