Electric Field Model at Interfaces in High Voltage Cable Systems

Author(s):  
Jorgens Christoph ◽  
Markus Clemens
Author(s):  
Christoph Jörgens ◽  
Markus Clemens

Purpose In high-voltage direct current (HVDC) cable systems, space charges accumulate because of the constant applied voltage and the nonlinear electric conductivity of the insulating material. The change in the charge distribution results in a slowly time-varying electric field. Space charges accumulate within the insulation bulk and at interfaces. With an operation time of several years of HVDC systems, typically the stationary electric field is of interest. The purpose of this study is to investigate the influence of interfaces on the stationary electric field stress and space charge density. Design/methodology/approach An analytic description of the stationary electric field inside cable insulation is developed and numerical simulations of a cable joint geometry are applied, considering spatial variations of the conductivity in the vicinity of the electrodes and interfaces. Findings With increasing conductivity values toward the electrodes, the resulting field stress decreases, whereas a decreasing conductivity results in an increasing electric field. The increased electric field may cause partial discharge, resulting in accelerated aging of the insulation material. Thus, interfaces and surfaces are characterized as critical areas for the reliability of HVDC cable systems. Research limitations/implications This study is restricted to stationary electric field and temperature distributions. The electric field variations during a polarity reversal or a time-varying temperature may result in an increased electric conductivity and electric field at interfaces and surfaces. Originality/value An analytical description of the electric field, considering surface effects, is developed. The used conductivity model is applicable for cable and cable-joint insulations, where homo- and hetero-charge effects are simulated. These simulations compare well against measurements.


Energies ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 5189
Author(s):  
Christoph Jörgens ◽  
Markus Clemens

In comparison to high-voltage alternating current (HVAC) cable systems, high-voltage direct current (HVDC) systems have several advantages, e.g., the transmitted power or long-distance transmission. The insulating materials feature a non-linear dependency on the electric field and the temperature. Applying a constant voltage, space charges accumulate in the insulation and yield a slowly time-varying electric field. As a complement to measurements, numerical simulations are used to obtain the electric field distribution inside the insulation. The simulation results can be used to design HVDC cable components such that possible failure can be avoided. This work is a review about the simulation of the time-varying electric field in HVDC cable components, using conductivity-based cable models. The effective mechanisms and descriptions of charge movement result in different conductivity models. The corresponding simulation results of the models are compared against measurements and analytic approximations. Different numerical techniques show variations of the accuracy and the computation time that are compared. Coupled electro-thermal field simulations are applied to consider the environment and its effect on the resulting electric field distribution. A special case of an electro-quasistatic field describes the drying process of soil, resulting from the temperature and electric field. The effect of electro-osmosis at HVDC ground electrodes is considered within this model.


Jurnal Teknik ◽  
2018 ◽  
Vol 7 (1) ◽  
Author(s):  
Mauludi Manfaluthy

WHO (World Health Organization) concludes that not much effect is caused by electric field up to 20 kV / m in humans. WHO standard also mentions that humans will not be affected by the magnetic field under  100 micro tesla and that the electric field will affect the human body with a maximum standard of 5,000 volts per meter. In this study did not discuss about the effect of high voltage radiation SUTT (High Voltage Air Channel) with human health. The research will focus on energy utilization of SUTT radiation. The combination of electric field and magnetic field on SUTT (70-150KV) can generate electromagnetic (EM) and radiation waves, which are expected to be converted to turn on street lights around the location of high voltage areas or into other forms. The design of this prototype works like an antenna in general that captures electromagnetic signals and converts them into AC waves. With a capacitor that can store the potential energy of AC and Schottky diode waves created specifically for low frequency waves, make the current into one direction (DC). From the research results obtained the current generated from the radiation is very small even though the voltage is big enough.Keywords : Radiance Energy, Joule Thief, and  LED Module.


1983 ◽  
Vol 26 (1) ◽  
pp. 49-50
Author(s):  
I. P. Klimashevskii ◽  
B. L. Kondrat'ev ◽  
V. A. Poletaev ◽  
V. M. Yurkevich

Sign in / Sign up

Export Citation Format

Share Document