An analytical discrete model for evaluation the chaotic behavior of boost converter under current control mode

Author(s):  
Ataollah Abbasi ◽  
Mehrdad Rostami ◽  
Jafar Abdollahi ◽  
Hamid Abbasi ◽  
Hasan.n Daneshmand
Energies ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 2262 ◽  
Author(s):  
Hua Han ◽  
Chao Luo ◽  
Xiaochao Hou ◽  
Mei Su ◽  
Wenbin Yuan ◽  
...  

For an AC-stacked photovoltaic (PV) inverter system with N cascaded inverters, existing control methods require at least N communication links to acquire the grid synchronization signal. In this paper, a novel decentralized control is proposed. For N inverters, only one inverter nearest the point of common coupling (PCC) needs a communication link to acquire the grid voltage phase and all other N − 1 inverters use only local measured information to achieved fully decentralized local control. Specifically, one inverter with a communication link utilizes the grid voltage phase and adopts current control mode to achieve a required power factor (PF). All other inverters need only local information without communication links and adopt voltage control mode to achieve maximum power point tracking (MPPT) and self-synchronization with grid voltage. Compared with existing methods, the communication link and complexity is greatly reduced, thus improved reliability and reduced communication costs are achieved. The effectiveness of the proposed control is verified by simulation tests.


2014 ◽  
Vol 530-531 ◽  
pp. 1022-1025
Author(s):  
Yan Xie ◽  
Ya Ne Liao ◽  
Hong Xie

This paper introduced a new modular multi-level converter (MMC), which could enhance the voltage and power level by sub-converter modules in series and was easy to extend to any level of output. Its structure and working mechanism were described. By analyzing the performance of STATCOM based on MMC working conditions in the reactive power compensation, this paper studied compensation control theory in reactive changing conditions. To obtain compensation control response speed faster and better compensation effect, a compensation control strategy was proposed based on direct current control mode. The simulation results show the strategy has a better tracking precision and response speed for the reactive power compensation.


2013 ◽  
Vol 347-350 ◽  
pp. 1358-1362
Author(s):  
Zi Сheng Li ◽  
Li Xu ◽  
Bao Shan Yuan

The purpose in this paper is the design of the control to switching power supply for small perturbations. By the theoretical analysis and calculation, with the output filter inductor current and filter capacitor voltage switching power supply as two state variables, the conclusion is that control of the output filter inductor current sampling do well in the anti-jamming. The simulation is made for verification. And comparing the results, the current control mode shows a very strong anti-interference ability.


Author(s):  
Fouad Farah ◽  
Mustapha El Alaoui ◽  
Abdelali El Boutahiri ◽  
Mounir Ouremchi ◽  
Karim El Khadiri ◽  
...  

In this paper, we aim to make a detailed study on the evaluation and the characteristics of the non-inverting buck–boost converter. In order to improve the behaviour of the buck-boost converter for the three operating modes, we propose an architecture based on peak current-control. Using a three modes selection circuit and a soft start circuit, this converter is able to expand the power conversion efficiency and reduce inrush current at the feedback loop. The proposed converter is designed to operate with a variable output voltage. In addition, we use LDMOS transistors with low on-resistance, which are adequate for HV applications. The obtained results show that the proposed buck-boost converter perform perfectly compared to others architecture and it is successfully implemented using 0.18 μm CMOS TSMC technology, with an output voltage regulated to 12V and input voltage range of 4-20 V. The power conversion efficiency for the three operating modes buck, boost and buck-boost are 97.6%, 96.3% and 95.5% respectively at load current of 4A.


2019 ◽  
Vol 11 (5) ◽  
pp. 1232 ◽  
Author(s):  
Md Alam ◽  
Mohammad Abido ◽  
Alaa Hussein ◽  
Ibrahim El-Amin

This paper proposes a non-superconducting bridge-type fault current limiter (BFCL) as a potential solution to the fault problems of doubly fed induction generator (DFIG) integrated voltage source converter high-voltage DC (VSC-HVDC) transmission systems. As the VSC-HVDC and DFIG systems are vulnerable to AC/DC faults, a BFCL controller is developed to insert sizeable impedance during the inception of system disturbances. In the proposed control scheme, constant capacitor voltage is maintained by the stator VSC (SVSC) controller, while current extraction or injection is achieved by rotor VSC (RVSC) controller. Current control mode-based active and reactive power controllers for an HVDC system are developed. Balanced and different unbalanced faults are applied in the system to show the effectiveness of the proposed BFCL solution. A DFIG wind-based VSC-HVDC system, BFCL, and their controllers are implemented in a real time digital simulator (RTDS). The performance of the proposed BFCL control strategy in DFIG-based VSC-HVDC system is compared with a series dynamic braking resistor (SDBR). Comparative RTDS implementation results show that the proposed BFCL control strategy is very efficient in improving system fault ride through (FRT) capability and outperforms SDBR in all cases considered.


Sign in / Sign up

Export Citation Format

Share Document