A Two-Step Time-to-Digital Converter using Ring Oscillator Time Amplifier

Author(s):  
Min Kim ◽  
Kyung-Sub Son ◽  
Namhoon Kim ◽  
Chang Hang Rho ◽  
Jin-Ku Kang
2019 ◽  
Vol 29 (08) ◽  
pp. 2050124
Author(s):  
Farshad Goodarzi ◽  
Siroos Toofan

This paper describes a 9-bit time-to-digital converter (TDC) with 3.6 ps resolution. The resolution of 3.6 ps is achieved using coarse and fine structure. The structure of the proposed two-step pipeline TDC is composed of a 4-bit coarse TDC (CTDC) based on delay line and a 5-bit fine TDC (FTDC) based on an SAR-CD algorithm where a Time Amplifier (TA) is used between them. Since TA amplifies the time intervals in different stages of delay line to achieve accurate gain with wide linear range. Therefore, the TDC has good linearity. The proposed TDC has Differential Non-Linearity (DNL) and Integral Non-Linearity (INL) errors of 1.6 and 2.6 LSB, respectively. This TDC was designed in 0.18[Formula: see text][Formula: see text]m CMOS technology. Using a supply voltage of 1.8[Formula: see text]V, the proposed TDC consumes 1.88[Formula: see text]mW at 25 MS/s throughput.


Electronics ◽  
2019 ◽  
Vol 8 (5) ◽  
pp. 558 ◽  
Author(s):  
Bjorn Van Bockel ◽  
Jeffrey Prinzie ◽  
Paul Leroux

This article presents a radiation tolerant single-shot time-to-digital converter (TDC) with a resolution of 15.6 ps, fabricated in a 65 nm complementary metal oxide semiconductor (CMOS) technology. The TDC is based on a multipath pseudo differential ring oscillator with reduced phase delay, without the need for calibration or interpolation. The ring oscillator is placed inside a Phase Locked Loop (PLL) to compensate for Process, Voltage and Temperature (PVT) variations- and variations due to ionizing radiation. Measurements to evaluate the performance of the TDC in terms of the total ionizing dose (TID) were done. Two different samples were irradiated up to a dose of 2.2 MGy SiO 2 while still maintaining a resolution of 15.6 ps. The TDC has a differential non-linearity (DNL) and integral non-linearity (INL) of 0.22 LSB rms and 0.34 LSB rms respectively.


Sign in / Sign up

Export Citation Format

Share Document