Killer defect detection using the IR-OBIRCH (infrared optical-beam-induced resistance-change) method

Author(s):  
K. Nikawa ◽  
S. Inoue ◽  
K. Morimoto
2011 ◽  
Vol 12 (10) ◽  
pp. 1632-1637 ◽  
Author(s):  
Heng-Tien Lin ◽  
Chang-Yu Lin ◽  
Zingway Pei ◽  
Jun-Rong Chen ◽  
Yi-Jen Chan ◽  
...  

Author(s):  
Jim Douglass ◽  
Sohrab Pourmand

Abstract This paper shows that by combining electrical fault isolation and characterization by microprobing with physical fault isolation techniques both what is wrong with the circuit and where the defect is located can be determined with less microprobing and more safety from electrical recovery. In the first example, the unit was powered up using the optical beam induced resistance change (OBIRCH) supply, and OBIRCH was performed to determine if there were OBIRCH site differences between the good part and the return. The second example uses a combination of electrical fault isolation and characterization with microprobing and the physical fault isolation tool of lock in thermography (LIT). With these two examples, it has been shown that the use of electrical fault isolation and microprobing can be used to enhance the physical fault isolation tools of OBIRCH and LIT.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Chenqi Yan ◽  
Mengchao Tan

The purpose is to make defect detection in microelectronic processing technology fast, accurate, reliable, and efficient. A new optical remote sensing-optical beam induced resistance change (ORS-OBIRCH) target recognition and location defect detection method is proposed based on an artificial intelligence algorithm, optical remote sensing (ORS), and optical beam induced resistance change (OBIRCH) location technology using deep convolutional neural network. This method integrates the characteristics of high resolution and rich details of the image obtained by ORS technology and combines the advantages of photosensitive temperature characteristics in OBIRCH positioning technology. It can be adopted to identify, capture, and locate the defects of microdevices in the process of microelectronic processing. Simulation results show that this method can quickly reduce the detection range and locate defects accurately and efficiently. The experimental results reveal that the ORS-OBIRCH target recognition defect location detection method can complete the dynamic synchronization of the IC detection system and obtain high-quality images by changing the laser beam irradiation cycle. Moreover, it can analyze and process the detection results to quickly, accurately, and efficiently locate the defect location. Unlike the traditional detection methods, the success rate of detection has been greatly improved, which is about 95.8%, an increase of nearly 40%; the detection time has been reduced by more than half, from 5.5 days to 1.9 days, and the improvement rate has reached more than 65%. In a word, this method has good practical application value in the field of microelectronic processing.


Author(s):  
Ted Kolasa

Abstract Equipment manufacturers have developed peripherals for their tools that add soft defect localization (SDL) capability to existing optical beam tools, in many cases providing excellent results. However, these upgrades add significant cost to the tool. This paper presents the design considerations for a simple adapter that was developed in house to add SDL capability to optical beam induced resistance change (OBIRCH) tool, including resolution of some unexpected problems. This solution represents a simple, low cost method to add SDL testing capability to the OBIRCH tool and can also be used in conjunction with OBIC and XIVA tools with little or no modification. An early example of the SDL results provided by this adapter is also presented.


Author(s):  
Felix Rolf ◽  
Christian Hollerith ◽  
Christian Feuerbaum

Abstract With decreasing transistor sizes accurate failure localization becomes more and more important in order to find the root cause of failures with high efficiency. Field returns are a special challenge, since there is usually only one sample for preparation. Hence, reliable high resolution localization is mandatory for a successful preparation. Optical beam induced resistance change (OBIRCH) is a powerful tool for localization but has resolution limitations due to the diameter of the optical beam. The tool can be further improved by the lock-in technique. In this paper we demonstrate that the lock-in technique can also be applied for electron beam localization methods like electron beam induced current (EBIC) / electron beam absorbed current (EBAC) and resistance change imaging (RCI) / electron beam induced resistance change (EBIRCH).


Sign in / Sign up

Export Citation Format

Share Document