Performance Analysis of Multi-energy Complementary Heating System Based on Photo-voltaic/thermal collectors and Heat Pumps

Author(s):  
Yanlei Li ◽  
Yan Gao ◽  
Jingru Liu ◽  
Yanteng Li ◽  
Jingquan Miao ◽  
...  
Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2347
Author(s):  
Elżbieta Hałaj ◽  
Jarosław Kotyza ◽  
Marek Hajto ◽  
Grzegorz Pełka ◽  
Wojciech Luboń ◽  
...  

Krakow has an extensive district heating network, which is approximately 900 km long. It is the second largest city in terms of the number of inhabitants in Poland, resulting in a high demand for energy—for both heating and cooling. The district heating of the city is based on coal. The paper presents the conception of using the available renewable sources to integrate them into the city’s heating system, increasing the flexibility of the system and its decentralization. An innovative solution of the use of hybrid, modular heat pumps with power dependent on the needs of customers in a given location and combining them with geothermal waters and photovoltaics is presented. The potential of deep geothermal waters is based on two reservoirs built of carbonate rocks, namely Devonian and Upper Jurassic, which mainly consist of dolomite and limestone. The theoretical potential of water intake equal to the nominal heating capacity of a geothermal installation is estimated at 3.3 and 2.0 MW, respectively. Shallow geothermal energy potential varies within the city, reflecting the complex geological structure of the city. Apart from typical borehole heat exchangers (BHEs), the shallower water levels may represent a significant potential source for both heating and cooling by means of water heat pumps. For the heating network, it has been proposed to use modular heat pumps with hybrid sources, which will allow for the flexible development of the network in places previously unavailable or unprofitable. In the case of balancing production and demand, a photovoltaic installation can be an effective and sufficient source of electricity that will cover the annual electricity demand generated by the heat pump installation, when it is used for both heating and cooling. The alternating demand of facilities for heating and cooling energy, caused by changes in the seasons, suggests potential for using seasonal cold and heat storage.


Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4625
Author(s):  
Alisa Freyre ◽  
Stefano Cozza ◽  
Matthias Rüetschi ◽  
Meinrad Bürer ◽  
Marlyne Sahakian ◽  
...  

In this paper, we perform a literature review on the current state of knowledge about homeowners in the context of the adoption of renewable heating systems. Despite a considerable number of studies about homeowners, homeowner–installer interactions, and ways to improve the effectiveness of renewable heating programs, based on homeowner knowledge, have not yet been studied in much detail. To address these knowledge gaps, we conduct a qualitative study on single-family house owners who installed heat pumps and took part in a renewable heating program in Geneva, Switzerland. We cover homeowner practices in choosing installers and heating system types, homeowners’ feedback about heat pump installation and use, as well as their experience in participation in the renewable heating program. Based on the literature review and the findings from the interviews, we provide the following recommendations on how to increase the effectiveness of renewable heating programs: (a) support for homeowners should not be limited to financial incentives; (b) partnership programs with installers could help to increase the quality of installation services and enable homeowners to choose qualified installers; and (c) assisting homeowners in pre-qualification and ex-post analysis, in learning how to operate their renewable heating systems and in solving problems during the post-installation period, can contribute to improved technology reputation, which can, in turn, increase technology uptake by other homeowners.


Energies ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2851 ◽  
Author(s):  
Kenneth Leerbeck ◽  
Peder Bacher ◽  
Rune Grønborg Junker ◽  
Anna Tveit ◽  
Olivier Corradi ◽  
...  

An optimized heat pump control for building heating was developed for minimizing CO 2 emissions from related electrical power generation. The control is using weather and CO 2 emission forecasts as inputs to a Model Predictive Control (MPC)—a multivariate control algorithm using a dynamic process model, constraints and a cost function to be minimized. In a simulation study, the control was applied using weather and power grid conditions during a full-year period in 2017–2018 for the power bidding zone DK2 (East, Denmark). Two scenarios were studied; one with a family house and one with an office building. The buildings were dimensioned based on standards and building codes/regulations. The main results are measured as the CO 2 emission savings relative to a classical thermostatic control. Note that this only measures the gain achieved using the MPC control, that is, the energy flexibility, not the absolute savings. The results show that around 16% of savings could have been achieved during the period in well-insulated new buildings with floor heating. Further, a sensitivity analysis was carried out to evaluate the effect of various building properties, for example, level of insulation and thermal capacity. Danish building codes from 1977 and forward were used as benchmarks for insulation levels. It was shown that both insulation and thermal mass influence the achievable flexibility savings, especially for floor heating. Buildings that comply with building codes later than 1979 could provide flexibility emission savings of around 10%, while buildings that comply with earlier codes provided savings in the range of 0–5% depending on the heating system and thermal mass.


Author(s):  
Muhammad Hanan Daudnota ◽  
Amir Mahmood Soomro ◽  
Anwar Ali Sahito ◽  
Mustafa Memon ◽  
Faheem Shafeeque

2020 ◽  
Author(s):  
Eric Wagner ◽  
Benjamin McDaniel ◽  
Dragoljub Kosanovic

Ground-source heat pump (GSHP) systems have been implemented at large scales on several university campuses to provide heating and cooling. In this study, we test the idea that a GSHP system, as a replacement for an existing Combined Heat and Power (CHP) heating system coupled with conventional cooling systems, could reduce CO2 emissions, and provide a cost benefit to a university campus. We use the existing recorded annual heating and cooling loads supplied by the current system and an established technique of modeling the heat pumps and borehole heat exchangers (BHEs) using a TRNSYS model. The GSHP system is modeled to follow the parameters of industry standards and sized to provide an optimal balance of capital and operating costs. Results show that despite a decrease in heating and cooling energy usage and CO2 emissions are achieved, a significant increase in electric demand and purchased electricity result in an overall cost increase. These results highlight the need for thermal energy storage, onsite distributed energy resources and/or demand response in cases where electric heat pumps are used to help mitigate electric demand during peak periods.


2013 ◽  
Vol 7 (4) ◽  
pp. 28-33
Author(s):  
Monika Pawlita

Background: The methods of heating houses with system components determine the energy-saving systems. Energy-saving solutions allow to maintain comfortable conditions in the house, while minimizing the cost associated with its operation and at the same time helping to protect natural environment. The examples of such solutions include condensing boilers, heat pumps and solar collectors.Material and methods: The object of the analysis in this paper is typical single-family house occupying the area of 150 m². The comparison of analyzed heating system for a single-family house, including modern energy sources, allows the assessment of the most cost-effective method of heating. Results: Choosing rational method of heating for a single-family house is dictated mainly by economic reasons. The efficiency of the heating sources is also very important. In addition, an important factor is a heating period, which depends on the weather conditions in a given year.Conclusions: The costs of fuel/energy are still growing. Fuel selection is determined mainly by fuel calorific value and the price. To select the type of the heating source one must take into account the cost of kWh of heat.


Sign in / Sign up

Export Citation Format

Share Document