Deterioration Mechanism of New Grouting Materials Under Coupling Effect of Heat Damage and Sulfate Attack

Author(s):  
Pengxu Li ◽  
Junwu Xia ◽  
Wenting Zhao
Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 4920
Author(s):  
Zanqun Liu ◽  
Min Pei ◽  
Yuelin Li ◽  
Qiang Yuan

In this study, the sulfate attack on uncarbonated cement paste partially exposed to Na2SO4 solution was experimentally investigated and compared with that on carbonated specimens with the same exposure regime and uncarbonated specimens without exposure. N2 was used to protect specimens from carbonation throughout the sulfate exposure period. The effects of the water-to-cement (w/c) ratio and the fly ash as cement replacement on the sulfate attack were evaluated. Portland cement paste specimens with different w/c ratios of 0.35, 0.45, and 0.55 or fly ash replacement rates of 10%, 20%, and 30% were prepared. These specimens were partially immersed in 5% Na2SO4 solution for 50 d and 100 d exposure periods. The micro-analysis was conducted to evaluate the effect of the partial sulfate attack on the uncarbonated cement paste using X-ray diffraction (XRD) and thermo-gravimetric (TG) techniques. The results confirmed that, for uncarbonated cement paste, the chemical attack rather than the physical attack is the deterioration mechanism and is responsible for more severe damage in the evaporation zone (dry part) compared with the immersed zone (immersed part). When the effect of carbonation is well excluded, there is an optimal w/c ratio of 0.45 for minimizing the sulfate attack, while incorporating fly ash tends to reduce the sulfate attack resistance.


Author(s):  
S.W. French ◽  
N.C. Benson ◽  
C. Davis-Scibienski

Previous SEM studies of liver cytoskeletal elements have encountered technical difficulties such as variable metal coating and heat damage which occurs during metal deposition. The majority of studies involving evaluation of the cell cytoskeleton have been limited to cells which could be isolated, maintained in culture as a monolayer and thus easily extracted. Detergent extraction of excised tissue by immersion has often been unsatisfactory beyond the depth of several cells. These disadvantages have been avoided in the present study. Whole C3H mouse livers were perfused in situ with 0.5% Triton X-100 in a modified Jahn's buffer including protease inhibitors. Perfusion was continued for 1 to 2 hours at ambient temperature. The liver was then perfused with a 2% buffered gluteraldehyde solution. Liver samples including spontaneous tumors were then maintained in buffered gluteraldehyde for 2 hours. Samples were processed for SEM and TEM using the modified thicarbohydrazide procedure of Malich and Wilson, cryofractured, and critical point dried (CPD). Some samples were mechanically fractured after CPD.


2020 ◽  
Vol 64 (1-4) ◽  
pp. 549-556
Author(s):  
Yajun Luo ◽  
Linwei Ji ◽  
Yahong Zhang ◽  
Minglong Xu ◽  
Xinong Zhang

The present work proposed an hourglass-type electromagnetic isolator with negative resistance (NR) shunt circuit to achieve the effective suppression of the micro-amplitude vibration response in various advanced instruments and equipment. By innovatively design of combining the displacement amplifier and the NR electromagnetic shunt circuit, the current new type of vibration isolator not only can effectively solve the problem of micro-amplitude vibration control, but also has significant electromechanical coupling effect, to obtain excellent vibration isolation performance. The design of the isolator and motion relationship is presented firstly. The electromechanical coupling dynamic model of the isolator is also given. Moreover, the optimal design of the NR electromagnetic shunt circuit and the stability analysis of the vibration isolation system are carried out. Finally, the simulation results about the transfer function and vibration responses demonstrated that the isolator has a significant isolation performance.


Sign in / Sign up

Export Citation Format

Share Document