remote triggering
Recently Published Documents


TOTAL DOCUMENTS

50
(FIVE YEARS 10)

H-INDEX

12
(FIVE YEARS 1)

Water ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 3656
Author(s):  
Eyal Shalev ◽  
Hallel Lutzky ◽  
Ittai Kurzon ◽  
Vladimir Lyakhovsky

Water levels in three adjacent water wells in the Yarmouk Gorge area have all responded to the 2020 Elazığ Mw 6.8 teleseismic earthquake. Water levels in two aquifers exhibited reciprocal behavior: during the first eight days after the earthquake, water level decreased by 40 cm in the deeper highly confined aquifer, and increased by 90 cm in the shallower less confined aquifer. The recovery of the water levels in both aquifers continued for at least three months. We interpret these observations as reflecting the increase in damage along the fault at the Yarmouk Gorge. Ground shaking increased the damage and permeability of this fault, temporarily connecting the two aquifers, allowing flow from the deep aquifer to the shallow one. Model results showing decreased permeability suggest that the fault healed by one order of magnitude within three days. This is the first documentation of decrease in permeability in a fault zone within such short time scales.


2021 ◽  
Vol 104 (4) ◽  
Author(s):  
Harish Charan ◽  
Anna Pomyalov ◽  
Itamar Procaccia
Keyword(s):  

2021 ◽  
Vol 119 (4) ◽  
pp. 041103
Author(s):  
O. G. Kosareva ◽  
D. V. Mokrousova ◽  
N. A. Panov ◽  
I. A. Nikolaeva ◽  
D. E. Shipilo ◽  
...  

2021 ◽  
Author(s):  
Bogdan Enescu ◽  
Yuki Takeda

<p><strong>Introduction. </strong>Previous studies (e.g., Harrington and Brodsky, 2006) documented a relative scarcity of remote triggering in Japan, compared to other seismic regions. For example, in California, dynamic triggering is reported to occur at levels of stress as small as 0.1 kPa, while in Japan it was reported that levels of 30 kPa or more are required to trigger detectable events (van der Elst and Brodsky, 2010). However, the threshold dynamic triggering level following the 2016 M7.3 Kumamoto earthquake was of just a few kPa (Enescu et al., 2016). Enescu et al. (2016) proposed that one of the possibilities to explain this observation is a change of stress triggering threshold that may have taken place after the 2011 M9.0 Tohoku-Oki earthquake.</p><p><strong>Motivation.</strong> Given the above observations, this study investigates 1) the occurrence of dynamically triggered earthquakes in Japan after some large earthquakes from 2004, and 2) whether the threshold of dynamic triggering may have changed due to the 2011 Tohoku-Oki earthquake and why this threshold might have changed.</p><p><strong>Analysis and Results.</strong> First, we investigated dynamic triggering throughout Japan, following some large earthquakes occurred after 2004. As a result, the  threshold appears to decrease following the 2011 Tohoku-Oki earthquake, however the number of earthquakes we have investigated was relatively small, so we could not draw statistically significant conclusions. In the second part of the study, we have focused on a few specific areas within Japan to systematically investigate dynamic triggering, which reduced significantly the computational costs. Thus, we focused on some areas in Tohoku and Hida, where swarm earthquakes occurred after the 2011 Tohoku-Oki earthquake. As a result, the change of the triggering level in an area close to the Yamagata-Fukushima border is considered to be statically significant at a 5% significance level. In other regions, the significance at a 5% level could not be established, however a decrease of this threshold is apparent, except for one region. We speculate that changes in the stress triggering threshold levels might be related to pore pressure changes in the crust following the 2011 Tohoku-Oki earthquake.</p>


2020 ◽  
Vol 113 ◽  
pp. 488-500 ◽  
Author(s):  
Ana M. Matos ◽  
Ana I. Gonçalves ◽  
Márcia T. Rodrigues ◽  
Margarida S. Miranda ◽  
Alicia J. El Haj ◽  
...  

2020 ◽  
Vol 125 (8) ◽  
Author(s):  
Richard Alfaro‐Diaz ◽  
Aaron A. Velasco ◽  
Kristine L. Pankow ◽  
Debi Kilb

2020 ◽  
Author(s):  
Stephan Harvey ◽  
Günter Schmudlach ◽  
Yves Bühler ◽  
Dürr Lukas ◽  
Andreas Stoffel ◽  
...  

<p>Terrain characteristics are one of the main factors contributing to avalanche formation as well as affecting the runout. Hence, terrain assessment is crucial for planning and decision making when travelling in the backcountry. So far, terrain is mainly interpreted manually from topographic maps or by observations in the field. Recent support for interpreting avalanche terrain is given by slope angle layers derived from digital elevation models or the Avalanche Terrain Exposure Scale (ATES) for classifying avalanche terrain manually. While digital elevation models and numerical simulations are used as standard for mapping avalanche hazard threatening settlements and key infrastructure, this is hardly the case when planning tours in the backcountry. Thus, our scope was to classify and map terrain of maximum size class 3 avalanches, which typically threaten backcountry recreationists. We present a new methodology for a high-resolution automatic classification of the avalanche terrain specifically for recreational backcountry travel by taking into account: a) potential avalanche release areas, b) remote triggering of avalanches, c) possible runout zones of max. size 3 avalanches.</p><p>Potential release areas were specified by computing a density estimate based on terrain characteristics of observed avalanche starting zones in the Davos region. The potential of remote triggering was estimated with a least-cost path analyses depending on the triggering distance from remotely triggered avalanches. Avalanche runout zones were performed with the avalanche simulation model RAMMS::EXTENDED. Combining all these methods and out of many simulations a classified avalanche terrain map for the entire Swiss Alps and the Jura was created characterizing potential release areas and runout zones. A validation of 870 accidental avalanches in the backcountry of Switzerland shows that only 2% of the mapped avalanche perimeters do not overlap with the simulations. The distribution of the terrain characteristics within both the release areas of the training dataset and the validation data was almost identical. Thus, the extrapolation from the calculated density estimate to the whole of Switzerland is feasible and appropriate. The created map assists the interpretation of avalanche terrain for travelling in the backcountry considering release areas and runout zones. Although the focus is on Switzerland, the methods can also be applied to other mountain areas worldwide.</p>


2020 ◽  
Author(s):  
Philipp L. Rosendahl ◽  
Philipp Weißgraeber

<p>Dry snow slab avalanche release depends heavily on the stratification of the snow cover and the mechanical properties of the individual snow layers. This does not only concern the depth and condition of the weak-layer but also the ordering and properties of all snow layers above it.</p><p>In order to allow for a quick stability assessment of stratified snow covers, we present an analytical model for snow cover deformations, weak-layer stresses and energy release rates of cracks within the weak-layer for arbitrarily layered snowpacks. In particular, the model covers the impact of the layering order on both the extensional and bending stiffness of the slab. It can be used for skier-loaded slopes and for stability tests such as the propagation saw test. The model is highly efficient and readily allows for parameter studies and implementation into other toolchains.</p><p>Recognizing weak-layer collapse as an integral part of the fracture process prior to the release of slab avalanches is crucial and explains phenomena such as whumpf sounds and remote triggering of avalanches from low angle terrain. Finite fracture mechanics introduces a new conceptual understanding of crack nucleation. It provides a coupled stress and energy failure criterion for anticrack formation in persistent weak-layers.</p><p>Incorporating this physically sound mixed-mode failure criterion, the model allows for the prediction of skier-loads that layered snowpacks can sustain before weak-layer failure triggering is expected that can lead to avalanche release. Our analysis covers the impact of the layering order on weak-layer stresses and critical skier-loads.</p>


Sign in / Sign up

Export Citation Format

Share Document