scholarly journals Bio-Sensor Based on Trapped Mode All-Dielectric Metasurface Coated with Graphene Layer to Enhance Sensitivity

2021 ◽  
pp. 1-1
Author(s):  
Xuesong Deng ◽  
Ming Fang ◽  
Zhixiang Huang ◽  
Xingang Ren ◽  
Jiaming Shi ◽  
...  
2019 ◽  
Vol 48 (12) ◽  
pp. 1248005-1248005
Author(s):  
Xue-song DENG Xue-song DENG ◽  
Ming FANG Ming FANG ◽  
Xin-gang REN Xin-gang REN ◽  
Zhi-xiang HUANG Zhi-xiang HUANG ◽  
Xian-liang WU Xian-liang WU

Author(s):  
A. Sayanskiy ◽  
M. Odit ◽  
V. Asadchy ◽  
P. Kapitanova ◽  
P. Belov

Electronics ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1363
Author(s):  
Binze Ma ◽  
Ao Ouyang ◽  
Juechen Zhong ◽  
Pavel A. Belov ◽  
Ravindra Kumar Sinha ◽  
...  

Sensing Microcystin-LR (MC-LR) is an important issue for environmental monitoring, as the MC-LR is a common toxic pollutant found in freshwater bodies. The demand for sensitive detection method of MC-LR at low concentrations can be addressed by metasurface-based sensors, which are feasible and highly efficient. Here, we demonstrate an all-dielectric metasurface for sensing MC-LR. Its working principle is based on quasi-bound states in the continuum mode (QBIC), and it manifests a high-quality factor and high sensitivity. The dielectric metasurface can detect a small change in the refractive index of the surrounding environment with a quality factor of ~170 and a sensitivity of ~788 nm/RIU. MC-LR can be specifically identified in mixed water with a concentration limit of as low as 0.002 μg/L by a specific recognition technique for combined antigen and antibody. Furthermore, the demonstrated detection of MC-LR can be extended to the identification and monitoring of other analytes, such as viruses, and the designed dielectric metasurface can serve as a monitor platform with high sensitivity and high specific recognition capability.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Guoxiang Zhu ◽  
Wei Zhu ◽  
Yang Lou ◽  
Jun Ma ◽  
Wenqing Yao ◽  
...  

AbstractMajor challenges encountered when developing manganese-based materials for ozone decomposition are related to the low stability and water inactivation. To solve these problems, a hierarchical structure consisted of graphene encapsulating α-MnO2 nanofiber was developed. The optimized catalyst exhibited a stable ozone conversion efficiency of 80% and excellent stability over 100 h under a relative humidity (RH) of 20%. Even though the RH increased to 50%, the ozone conversion also reached 70%, well beyond the performance of α-MnO2 nanofiber. Here, surface graphite carbon was activated by capturing the electron from inner unsaturated Mn atoms. The excellent stability originated from the moderate local work function, which compromised the reaction barriers in the adsorption of ozone molecule and the desorption of the intermediate oxygen species. The hydrophobic graphene shells hindered the chemisorption of water vapour, consequently enhanced its water resistance. This work offered insights for catalyst design and would promote the practical application of manganese-based catalysts in ozone decomposition.


Sensors ◽  
2020 ◽  
Vol 20 (7) ◽  
pp. 2134 ◽  
Author(s):  
Marcin Lebioda ◽  
Ryszard Pawlak ◽  
Witold Szymański ◽  
Witold Kaczorowski ◽  
Agata Jeziorna

This paper describes a method for patterning the graphene layer and gold electrodes on a ceramic substrate using a Nd:YAG nanosecond fiber laser. The technique enables the processing of both layers and trimming of the sensor parameters. The main aim was to develop a technique for the effective and efficient shaping of both the sensory layer and the metallic electrodes. The laser shaping method is characterized by high speed and very good shape mapping, regardless of the complexity of the processing. Importantly, the technique enables the simultaneous shaping of both the graphene layer and Au electrodes in a direct process that does not require a complex and expensive masking process, and without damaging the ceramic substrate. Our results confirmed the effectiveness of the developed laser technology for shaping a graphene layer and Au electrodes. The ceramic substrate can be used in the construction of various types of sensors operating in a wide temperature range, especially the cryogenic range.


Sign in / Sign up

Export Citation Format

Share Document