Influence of PECVD Deposition Power and Pressure on Phosphorus-Doped Polysilicon Passivating Contacts

2020 ◽  
Vol 10 (5) ◽  
pp. 1239-1245
Author(s):  
Wenhao Chen ◽  
Josua Stuckelberger ◽  
Wenjie Wang ◽  
Sieu Pheng Phang ◽  
Di Kang ◽  
...  
Author(s):  
A. Ourmazd ◽  
G.R. Booker ◽  
C.J. Humphreys

A (111) phosphorus-doped Si specimen, thinned to give a TEM foil of thickness ∼ 150nm, contained a dislocation network lying on the (111) plane. The dislocation lines were along the three <211> directions and their total Burgers vectors,ḇt, were of the type , each dislocation being of edge character. TEM examination under proper weak-beam conditions seemed initially to show the standard contrast behaviour for such dislocations, indicating some dislocation segments were undissociated (contrast A), while other segments were dissociated to give two Shockley partials separated by approximately 6nm (contrast B) . A more detailed examination, however, revealed that some segments exhibited a third and anomalous contrast behaviour (contrast C), interpreted here as being due to a new dissociation not previously reported. Experimental results obtained for a dislocation along [211] with for the six <220> type reflections using (g,5g) weak-beam conditions are summarised in the table below, together with the relevant values.


1998 ◽  
Author(s):  
Tomasz Brozek ◽  
James Heddleson

Abstract Use of non-contact test techniques to characterize degradation of the Si-SiO2 system on the wafer surface exposed to a plasma environment have proven themselves to be sensitive and useful in investigation of plasma charging level and uniformity. The current paper describes application of the surface charge analyzer and surface photo-voltage tool to explore process-induced charging occurring during plasma enhanced chemical vapor deposition (PECVD) of TEOS oxide. The oxide charge, the interface state density, and dopant deactivation are studied on blanket oxidized wafers with respect to the effect of oxide deposition, power lift step, and subsequent annealing.


Author(s):  
Meric Firat ◽  
Hariharsudan Sivaramakrishnan Radhakrishnan ◽  
Maria Recaman Payo ◽  
Filip Duerinckx ◽  
Rajiv Sharma ◽  
...  

RSC Advances ◽  
2021 ◽  
Vol 11 (21) ◽  
pp. 12682-12686
Author(s):  
Yuanjin Li ◽  
Shuhui Wang ◽  
Jin Wu ◽  
Qiuyan Wang ◽  
Changqiu Ma ◽  
...  

Porous phosphorus-doped g-C3N4 (PCNT) has intensive oxygen activation ability to generate superoxide radicals, and can efficiently catalyze synthesis of benzoin from benzyl alcohol, with conversion rate and selectivity near to 100%.


2021 ◽  
pp. 106318
Author(s):  
Yong Li ◽  
Hong Zhao ◽  
Siyuan Chen ◽  
Shuhao Bao ◽  
Feifei Xing ◽  
...  

2021 ◽  
Vol 129 (10) ◽  
pp. 105701
Author(s):  
I. Stenger ◽  
M.-A. Pinault-Thaury ◽  
N. Temahuki ◽  
R. Gillet ◽  
S. Temgoua ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3700
Author(s):  
Wenquan Wang ◽  
Ming Du ◽  
Xinge Zhang ◽  
Chengqun Luan ◽  
Yingtao Tian

H13 steel is often damaged by wear, erosion, and thermal fatigue. It is one of the essential methods to improve the service life of H13 steel by preparing a coating on it. Due to the advantages of high melting point, good wear, and corrosion resistance of Mo, Mo coating was fabricated on H13 steel by electro spark deposition (ESD) process in this study. The influences of the depositing parameters (deposition power, discharge frequency, and specific deposition time) on the roughness of the coating, thickness, and properties were investigated in detail. The optimized depositing parameters were obtained by comparing roughness, thickness, and crack performance of the coating. The results show that the cross-section of the coating mainly consisted of strengthening zone and transition zone. Metallurgical bonding was formed between the coating and substrate. The Mo coating mainly consisted of Fe9.7Mo0.3, Fe-Cr, FeMo, and Fe2Mo cemented carbide phases, and an amorphous phase. The Mo coating had better microhardness, wear, and corrosion resistance than substrate, which could significantly improve the service life of the H13 steel.


Author(s):  
Kota Tomita ◽  
Tatsuya Shiraishi ◽  
Hiroaki Kato ◽  
Hiroyuki Kishimoto ◽  
Katsura Miyashita ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document