Identification of Charging Effects in Plasma-Enhanced TEOS Deposition with Non-Contact Test Techniques

Author(s):  
Tomasz Brozek ◽  
James Heddleson

Abstract Use of non-contact test techniques to characterize degradation of the Si-SiO2 system on the wafer surface exposed to a plasma environment have proven themselves to be sensitive and useful in investigation of plasma charging level and uniformity. The current paper describes application of the surface charge analyzer and surface photo-voltage tool to explore process-induced charging occurring during plasma enhanced chemical vapor deposition (PECVD) of TEOS oxide. The oxide charge, the interface state density, and dopant deactivation are studied on blanket oxidized wafers with respect to the effect of oxide deposition, power lift step, and subsequent annealing.

2000 ◽  
Vol 640 ◽  
Author(s):  
Hiroyuki Matsunami ◽  
Tsunenobu Kimoto ◽  
Hiroshi Yano

ABSTRACTHigh-quality 4H-SiC has been epitaxially grown on (1120) substrates by chemical vapor deposition. The physical properties of epilayers and MOS interfaces on both (1120) and off-axis (0001) substrates are elucidated. An unintentionally doped 4H-SiC epilayer on (1120) shows a donor concentration of 1×1014 cm−3 with a total trap concentration as low as 3.8×1012 cm−3. Inversion-type planar MOSFETs fabricated on 4H-SiC (1120) exhibit a high channel mobility of 96 cm2/Vs. The channel mobility decreases according to the T−2.2 dependence above 200K, indicating reduced Coulomb scattering and/or electron trapping. The superior MOS interface on (1120) originates from the much lower interface state density near the conduction band edge.


1998 ◽  
Vol 555 ◽  
Author(s):  
A. Izumi ◽  
H. Matsumura

AbstractWe propose a novel preparation of high quality silicon nitride (SiNx) films by catalytic chemical vapor deposition (Cat-CVD) method for the application of antireflection coatings. It is found that the refractive index (n) of the Cat-CVD SiNx films are controlled from 2.0 to 2.5 by varying the flow ratio of SiH4 and NH3. The properties of the SiNx (n = 2.0) are investigated, and it is found that, 1) the 16-BHF etching rate of the Cat-CVD SiNx film is only 23 A/min, and the film shows excellent moisture resistance, 2) the Cat-CVD SiNx film shows good insulating properties, and the breakdown electric field is higher than 9 MV/cm and the interface state density is 5.6x 1011 cm2eV-1, 3) the step coverage of the film is very conformal.


2012 ◽  
Vol 2012 ◽  
pp. 1-10
Author(s):  
Ming-Kwei Lee ◽  
Chih-Feng Yen

The electrical characteristics of TiO2films grown on III-V semiconductors (e.g., p-type InP and GaAs) by metal-organic chemical vapor deposition were studied. With (NH4)2S treatment, the electrical characteristics of MOS capacitors are improved due to the reduction of native oxides. The electrical characteristics can be further improved by the postmetallization annealing, which causes hydrogen atomic ion to passivate defects and the grain boundary of polycrystalline TiO2films. For postmetallization annealed TiO2on (NH4)2S treated InP MOS, the leakage current densities can reach2.7×10−7and2.3×10−7 A/cm2at±1 MV/cm, respectively. The dielectric constant and effective oxide charges are 46 and1.96×1012 C/cm2, respectively. The interface state density is7.13×1011 cm−2eV−1at the energy of 0.67 eV from the edge of valence band. For postmetallization annealed TiO2on (NH4)2S treated GaAs MOS, The leakage current densities can reach9.7×10−8and1.4×10−7at±1 MV/cm, respectively. The dielectric constant and effective oxide charges are 66 and1.86×1012 C/cm2, respectively. The interface state density is5.96×1011 cm−2eV−1at the energy of 0.7 eV from the edge of valence band.


Sign in / Sign up

Export Citation Format

Share Document