Inhomogeneity of Plated Contacts for c-Si Solar Cells and Their Impact on Solar Cell Efficiency

2020 ◽  
Vol 10 (5) ◽  
pp. 1455-1462
Author(s):  
Hassan Merhi ◽  
Andreas Fell ◽  
Benjamin Grubel ◽  
Markus Glatthaar ◽  
Sven Kluska
Author(s):  
Hisaaki Nishimura ◽  
Takaya Maekawa ◽  
Kazushi Enomoto ◽  
Naoteru Shigekawa ◽  
Tomomi Takagi ◽  
...  

The sensitivity of Si solar cells to the UV portion of the solar spectrum is low, and must be increased to further improve their efficiencies.


2020 ◽  
Vol 995 ◽  
pp. 71-76
Author(s):  
Aaron Glenn ◽  
Conor Mc Loughlin ◽  
Hind Ahmed ◽  
Hoda Akbari ◽  
Subhash Chandra ◽  
...  

The main energy losses in solar cells are related to spectral losses where high energy photons are not used efficiently, and energy is lost via thermalization which reduces the solar cell’s overall efficiency. A way to tackle this is to introduce a luminescent down-shifting layer (LDS) to convert these high energy photons into a lower energy bracket helping the solar cell to absorb them and thus generating a greater power output. In this paper, lumogen dye Violet 570 has been used as LDS coated films of 10μm and 60μm placed on top of Si solar cells. The dye was incorporated into polymer films of Polyvinyl Butyral (PVB) and Polymethyl Methacrylate (PMMA) after which they were tested for their absorption, transmission and emission properties. Once optimised layers had been determined, they were deposited directly onto silicon solar cells and the external quantum efficiency (EQE) of the Si solar cells were measured with and without the LDS layers. The resulting graphs have shown an increase of up to 2.9% in the overall EQE efficiency after the lumogen films had been applied.


Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1684
Author(s):  
Alessandro Romeo ◽  
Elisa Artegiani

CdTe is a very robust and chemically stable material and for this reason its related solar cell thin film photovoltaic technology is now the only thin film technology in the first 10 top producers in the world. CdTe has an optimum band gap for the Schockley-Queisser limit and could deliver very high efficiencies as single junction device of more than 32%, with an open circuit voltage of 1 V and a short circuit current density exceeding 30 mA/cm2. CdTe solar cells were introduced at the beginning of the 70s and they have been studied and implemented particularly in the last 30 years. The strong improvement in efficiency in the last 5 years was obtained by a new redesign of the CdTe solar cell device reaching a single solar cell efficiency of 22.1% and a module efficiency of 19%. In this paper we describe the fabrication process following the history of the solar cell as it was developed in the early years up to the latest development and changes. Moreover the paper also presents future possible alternative absorbers and discusses the only apparently controversial environmental impacts of this fantastic technology.


Author(s):  
H. Bitam ◽  
B. Hadjoudja ◽  
Beddiaf Zaidi ◽  
C. Shakher ◽  
S. Gagui ◽  
...  

Due to increased energy intensive human activities resulting accelerated demand for electric power coupled with occurrence of natural disasters with increased frequency, intensity, and duration, it becomes essential to explore and advance renewable energy technology for sustainability of the society. Addressing the stated problem and providing a radical solution has been attempted in this study. To harvest the renewable energy, among variety of solar cells reported, a composite a-Si/CZTS photovoltaic devices has not yet been investigated. The calculated parameters for solar cell based on the new array of layers consisting of a-Si/CZTS are reported in this study. The variation of i) solar cell efficiency as a function of CZTS layer thickness, temperature, acceptor, and donor defect concentration; ii) variation of the open circuit current density as a function of temperature, open circuit voltage; iii) variation of open circuit voltage as a function of the thickness of the CZTS layer has been determined. There has been no reported study on a-Si/CZTS configuration-based solar cell, analysis of the parameters, and study to address the challenges imped efficiency of the photovoltaic device and the same has been discussed in this work. The value of the SnO2/a-Si/CZTS solar cells obtained from the simulation is 23.9 %.


2018 ◽  
Vol 5 (4) ◽  
pp. 041602 ◽  
Author(s):  
Michael Powalla ◽  
Stefan Paetel ◽  
Erik Ahlswede ◽  
Roland Wuerz ◽  
Cordula D. Wessendorf ◽  
...  

2019 ◽  
Vol 7 (41) ◽  
pp. 23739-23746 ◽  
Author(s):  
Chengbin Fei ◽  
Meng Zhou ◽  
Jonathan Ogle ◽  
Detlef-M. Smilgies ◽  
Luisa Whittaker-Brooks ◽  
...  

Large size cation (PA) was introduced into the grain boundary and film surface of the 3D perovskite to improve the solar cell efficiency and moisture stability.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Pelin Kavak ◽  
Elif Alturk Parlak

We have fabricated organic solar cell of a new low bandgap polymer poly[4,4-bis(2-ethylhexyl)-4H-cyclopenta[2,1-b:3,4-b′]dithiophene-2,6-diyl-alt-4,7-bis(2-thienyl)-2,1,3-benzothiadiazole-5′,5′′-diyl] (PCPDTTBTT). We have investigated for the first time the stability tests, ISOS-L-1 and ISOS-D-3, of PCPDTTBTT solar cells. Thermal annealing of PCPDTTBTT solar cells at 80°C brought about an improvement of photocurrent generation, stability, and efficiency of the solar cells. T80 value of PCPDTTBTT solar cell is about 150 hours which is close to P3HT (235 h). PCPDTTBTT is very promising polymer for both polymer solar cell efficiency and stability.


2011 ◽  
Vol 23 (45) ◽  
pp. 5451-5455 ◽  
Author(s):  
Hsieh-Chih Chen ◽  
Chih-Wei Lai ◽  
I-Che Wu ◽  
Hsin-Ru Pan ◽  
I-Wen P. Chen ◽  
...  

2015 ◽  
Vol 3 (44) ◽  
pp. 22154-22161 ◽  
Author(s):  
Alba Matas Adams ◽  
Jose Manuel Marin-Beloqui ◽  
Georgiana Stoica ◽  
Emilio Palomares

This works shows the influence of the mesoporous TiO2 nature over the carrier recombination kinetics and the perovskite efficiency.


2017 ◽  
Vol 14 (5) ◽  
pp. 363-367 ◽  
Author(s):  
Mohammad Bagher Askari ◽  
Mohammad Reza Bahrampour ◽  
Vahid Mirzaei ◽  
Amir Khosro Beheshti Marnani ◽  
Mirhabibi Mohsen

Purpose The aim of this paper is to apply a watery infrared filter for silicon solar cell efficiency enhancement in Kerman province of Iran as a talent region for solar energy production. Design/methodology/approach With this research, the water is applied as a filter for silicon solar cells in different volumes and thicknesses. Findings The obtained results showed that using various amounts of water could be a suitable choice for increasing the efficiency of silicon solar cells. Originality/value Other wavelength regions just cause the increase in the entropy and decrease in the efficiency. With this research, the water is applied as a filter for silicon solar cell in different volumes and thickness. The obtained results showed that using different thicknesses of water could be suitable choice for increasing the efficiency of silicon solar cell.


Sign in / Sign up

Export Citation Format

Share Document