scholarly journals The Power of Models: Modeling Power Consumption for IoT Devices

2015 ◽  
Vol 15 (10) ◽  
pp. 5777-5789 ◽  
Author(s):  
Borja Martinez ◽  
Marius Monton ◽  
Ignasi Vilajosana ◽  
Joan Daniel Prades
Symmetry ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 552 ◽  
Author(s):  
Rocksan Choi ◽  
SeungGwan Lee ◽  
Sungwon Lee

In our modern world, many Internet of Things (IoT) technologies are being researched and developed. IoT devices are currently being used in many fields. IoT devices use Wi-Fi and Bluetooth, however, communication distance is short and battery consumption is high. In areas such as smart cities and smart farms, IoT technology is needed to support a wide coverage with low power consumption. Low Power Wide Area (LPWA), which is a transmission used in IoT supporting a wide area with low power consumption, has evolved. LPWA includes Long Range (LoRa), Narrowband (NB-IoT), and Sigfox. LoRa offers many benefits as it communicates the longest distances, is cheap and consumes less battery. LoRa is used in many countries and covers a range of hundreds of square kilometers (km2) with a single gateway. However, if there are many obstacles to smart cities and smart farms, it causes communication problems. This paper proposes two (2) solutions to this problem: the relay method which is a multi-hop method and the Automatic Repeat Request (ARQ) system that detects packet loss in real-time and requests retransmission for LoRa. In this study, the actual performance of LoRa in the problematic environment was measured and the proposed method was applied. It was confirmed that the transmission rate of LoRa dropped when there were many obstacles such as trees. To use LoRa in a smart farm with a lot of space, multi-hop was observed to be better. An ARQ system is needed to compensate for the unexpected drop in the forward rate due to the increase in IoT devices. This research focused on reliability, however, additional network methods and automatic repeat request (ARQ) systems considering battery time should be researched in symmetry. This study covers the interdisciplinary field of computer science and wireless low power communication engineering. We have analyzed the LoRa/LoRaWAN technology in an experimental approach, which has been somewhat less studied than cellular network or WiFi technology. In addition, we presented and improved the performance evaluation results in consideration of various local and climatic environments.


2018 ◽  
Vol 7 (4.6) ◽  
pp. 388
Author(s):  
G. A. Vani ◽  
M. Metilda Florence

The emergence of Internet of things (IoT) is due to its   ability to dutifully transfer the data through a network. Now the concern is that security is not considered as main priority while developing the product. IoT is prone to vulnerabilities where Botnet and DDoS kind of attacks are common and a major issue that has to be considered these days. Since IoT is in no way resistive to attacks, this paper is all about proposing a solution for the Distributed Denial of Services attack that happens on IoT platform. Light weight authentication is necessary for any IoT devices because to reduce the power consumption and increase the processing speed of the device [16]. The experimental setup is built on OS named Contiki with cooja simulator that suits to all the devices that are in the IoT environment.   


2018 ◽  
Vol 7 (2.6) ◽  
pp. 231
Author(s):  
Teyi Yann Cedric Lawson ◽  
Senthilnathan T

Elliptic Curves when compared to other encryptions scheme such as RSA etc., provides an equivalent security, smaller key sizes, less power consumption, faster calculations, less bandwidth used and is more suitable for Internet of Things devices. In addition of encrypting the data, the devices in the network should also be able to authenticate themselves, which can be achieved with the implementation of “Non-Interactive Zero Knowledge protocol” (NIZKP). This protocol involves two parties: The prover and the Verifier. Prover party should prove to the Verifier that they have the knowledge of something, without revealing what is it. In this paper, a study of Schnorr protocol or ∑- protocol over Elliptic Curves is done and the protocol is implemented in Python using the Python Cryptography Toolkit PyCrypto which is a collection of cryptographic modules implementing various algorithms and protocols. Finally, the results were compared with Elliptic Curve Diffie-Hellmann(ECDH) and present a performance evaluation of the protocols on the Raspberry Pi 3B model, a credit-card sized computer used for the development of IoT devices hence the perfect platforms to test the protocol.  


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Tarek Frikha ◽  
Faten Chaabane ◽  
Nadhir Aouinti ◽  
Omar Cheikhrouhou ◽  
Nader Ben Amor ◽  
...  

The adoption of Internet of Things (IoT) technology across many applications, such as autonomous systems, communication, and healthcare, is driving the market’s growth at a positive rate. The emergence of advanced data analytics techniques such as blockchain for connected IoT devices has the potential to reduce the cost and increase in cloud platform adoption. Blockchain is a key technology for real-time IoT applications providing trust in distributed robotic systems running on embedded hardware without the need for certification authorities. There are many challenges in blockchain IoT applications such as the power consumption and the execution time. These specific constraints have to be carefully considered besides other constraints such as number of nodes and data security. In this paper, a novel approach is discussed based on hybrid HW/SW architecture and designed for Proof of Work (PoW) consensus which is the most used consensus mechanism in blockchain. The proposed architecture is validated using the Ethereum blockchain with the Keccak 256 and the field-programmable gate array (FPGA) ZedBoard development kit. This implementation shows improvement in execution time of 338% and minimizing power consumption of 255% compared to the use of Nvidia Maxwell GPUs.


Author(s):  
Muhammad Dzaky Ivansyah ◽  
Edwar Edwar ◽  
Nachwan Mufti Adriansyah ◽  
Harfan Hian Ryanu ◽  
Dhoni Putra Setiawan

CubeSat attracts many researchers due to its low production and deployment cost. One of the application is implemented in low data rate communication or machine to machine (M2M) with IoT devices in remote areas such as islands, forests, and mountains. In this study, a CubeSat receiver for IoT communication in remote areas has been developed and realized. A LoRa SX1276 chip is used for processing passband signals captured by the antenna. The device has a amplifier gain of 20.92 dB, 390 mW power consumption, and operating frequency of 923 MHz. The developed CubeSat is expected to provide a low bit rate of 5468.750 bps for SF 7 and 292.969 for SF 12 , the receiver serves as a concentrator for monitoring devices in rural areas.


Sign in / Sign up

Export Citation Format

Share Document