Design and fabrication of thermocouple sensors based on a ceramic curved alumina substrate

2021 ◽  
pp. 1-1
Author(s):  
Nan Zhao ◽  
Qiulin Tan ◽  
Helei Dong ◽  
Junqi Pang ◽  
Xin Wang ◽  
...  
Keyword(s):  
Author(s):  
J. R. Heffelfinger ◽  
C. B. Carter

Transmission-electron microscopy (TEM), scanning-electron microscopy (SEM) and energy-dispersive x-ray spectroscopy (EDS) were used to investigate the solid-state reaction between a thin yttria film and a (0001) α-alumina substrate. Systems containing Y2O3 (yttria) and Al2O3 (alumina) are seen in many technologically relevant applications. For example, yttria is being explored as a coating material for alumina fibers for metal-ceramic composites. The coating serves as a diffusion barrier and protects the alumina fiber from reacting with the metal matrix. With sufficient time and temperature, yttria in contact with alumina will react to form one or a combination of phases shown by the phase diagram in Figure l. Of the reaction phases, yttrium aluminum garnet (YAG) is used as a material for lasers and other optical applications. In a different application, YAG is formed as a secondary phase in the sintering of AIN. Yttria is added to AIN as a sintering aid and acts as an oxygen getter by reacting with the alumina in AIN to form YAG.


1991 ◽  
Vol 30 (Part 2, No. 1A) ◽  
pp. L32-L34 ◽  
Author(s):  
Yoshiko H. Ohashi ◽  
Keisuke Kawabata ◽  
Minoru Niwa ◽  
Mitsuru Fukuchi
Keyword(s):  

2009 ◽  
Vol 63 (29) ◽  
pp. 2552-2555 ◽  
Author(s):  
A. Khodin ◽  
Lee Joong-Kee ◽  
Kim Chang-Sam ◽  
Kim Sang-Ok

2016 ◽  
Vol 366 ◽  
pp. 227-232 ◽  
Author(s):  
Ming Lv ◽  
Jianguo Liu ◽  
Suhuan Wang ◽  
Jun Ai ◽  
Xiaoyan Zeng

Catalysts ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 10
Author(s):  
Yang Dang ◽  
Yu Cheng ◽  
Yukun Zhou ◽  
Yifei Huang ◽  
Kaige Wang

The treatment of organic dye contaminants in wastewaters has now becoming more imperative. Fenton-like degradation of methylene blue (MB) and methyl orange (MO) in aqueous solution was investigated by using a nanostructure that a layer of CuCl2 nanoflake film grown on the top surface of nanoporus anodic alumina substrate (nano-PAA-CuCl2) as catalyst. The new nano-PAA-CuCl2 composite was fabricated with self-assembly approach, that is, a network porous structure film composed of CuCl2 nanoflake grown on the upper surface of nanoporous anodic alumina substrate, and the physical and chemical properties are characterized systematically with the X-ray diffraction (XRD), field emission scanning electron microscope (FE-SEM), and high-resolution transmission electron microscopy (HRTEM), Energy Dispersive Spectrometer (EDS), X-ray photoelectron spectroscopy (XPS). The experimental results showed that the nano-PAA-CuCl2 catalyst presented excellent properties for the degradation of two typical organic pollutants such as MB and MO, which were almost completely degraded with 8 × 10−4mol/L nano-PAA-CuCl2 catalyst after 46 min and 60 min at reaction conditions of H2O2 18 mM and 23 mM, respectively. The effects of different reaction parameters such as initial pH, H2O2 concentration, catalyst morphology and temperature were attentively studied. And more, the stability and reusability of nano-PAA-CuCl2 were examined. Finally, the mechanism of MB and MO degradation by the nano-PAA-CuCl2/H2O2 system was proposed, based on the experimental data of the BCA and the temperature-programmed reduction (H2-TPR) and theoretical analysis, the reaction kinetics belonged to the pseudo-first-order equation. This new nanoporous composite material and preparation technology, as well as its application in Fenton-like reaction, provide an effective alternative method with practical application significance for wastewater treatment.


2021 ◽  
pp. 163376
Author(s):  
L. Řeháčková ◽  
V. Novák ◽  
P. Váňová ◽  
D. Matýsek ◽  
M. Tkadlečková ◽  
...  

1997 ◽  
Vol 12 (11) ◽  
pp. 3174-3181 ◽  
Author(s):  
Jae-Won Park ◽  
Anthony J. Pedraza ◽  
Douglas H. Lowndes ◽  
William R. Allen

Strong adhesion between a deposited copper film and an alumina substrate takes place when the substrate is laser-irradiated prior to deposition. A post-deposition annealing is required to achieve the strong bonding. In this work, the interfacial region between the copper film and the alumina substrate was analyzed using Auger Electron Spectroscopy (AES). It was found that a transitional region is always present in couples that have a high adhesion strength, while little or no transitional region was found in weakly bonded couples. The transitional region depends on the laser irradiation atmosphere. In the case of laser irradiation in air, oxygen excess was found on the surface of the alumina substrate, and in the copper/alumina couple the transitional region consists of a copper oxide and a Cu–Al double oxide. When the laser irradiation was performed in a reducing atmosphere (Ar–4% H2), substoichiometric alumina and metallic aluminum were found on the surface of the substrate and also a reaction between copper and the substoichiometric aluminum oxide was detected in the subsurface. Although the substoichiometric alumina is formed on the surface irradiated in Ar–4% H2, a stable Al2O3 thin layer is formed on the outmost surface because the irradiated substrate is exposed to the atmosphere before deposition. This reoxidized layer remains whole at the interface of the couple upon low temperature (at least up to 300 °C) annealing, while it is ruptured upon higher temperature annealing (500 °C in this work). In the latter case, the copper film can contact and react with the substoichiometric alumina formed in the subsurface of the substrate irradiated in the Ar–4% H2 atmosphere. It is concluded that the Cu–Al–O interfacial compound formed in the transitional region causes the strong adhesion between the copper film and the alumina substrate.


1995 ◽  
Vol 240 (5-6) ◽  
pp. 429-434 ◽  
Author(s):  
J. Libuda ◽  
A. Sandell ◽  
M. Bäumer ◽  
H.-J. Freund

Sign in / Sign up

Export Citation Format

Share Document