Investigation of Different Approaches to Real-Time Control of Prosthetic Hands with Electromyography Signals

2021 ◽  
pp. 1-1
Author(s):  
Joao Olegario de O. De Souza ◽  
Marcos D. Bloedow ◽  
Felipe Rubo ◽  
Rodrigo M. De Figueiredo ◽  
Gustavo Pessin ◽  
...  
2020 ◽  
Author(s):  
Gang Liu ◽  
Lu Wang ◽  
Jing Wang

Myoelectric prosthetic hands create the possibility for amputees to control their prosthetics like native hands. However, user acceptance of the extant myoelectric prostheses is low. Unnatural control, lack of sufficient feedback, and insufficient functionality are cited as primary reasons. Recently, although many multiple degrees-of-freedom (DOF) prosthetic hands and tactile-sensitive electronic skins have been developed, no non-invasive myoelectric interfaces can decode both forces and motions for five-fingers independently and simultaneously. This paper proposes a myoelectric interface based on energy allocation and fictitious forces hypothesis by mimicking the natural neuromuscular system. The energy-based interface uses a kind of continuous “energy mode” in the level of the entire hand. According to tasks itself, each energy mode can adaptively and simultaneously implement multiple hand motions and exerting continuous forces for a single finger. Also, a few learned energy modes could extend to the unlearned energy mode, highlighting the extensibility of this interface. We evaluate the proposed system through off-line analysis and operational experiments performed on the expression of the unlearned hand motions, the amount of finger energy, and real-time control. With active exploration, the participant was proficient at exerting just enough energy to five fingers on “fragile” or “heavy” objects independently, proportionally, and simultaneously in real-time. The main contribution of this paper is proposing the bionic energy-motion model of hand: decoding a few muscle-energy modes of the human hand (only ten modes in this paper) map massive tasks of bionic hand.


1995 ◽  
Vol 34 (05) ◽  
pp. 475-488
Author(s):  
B. Seroussi ◽  
J. F. Boisvieux ◽  
V. Morice

Abstract:The monitoring and treatment of patients in a care unit is a complex task in which even the most experienced clinicians can make errors. A hemato-oncology department in which patients undergo chemotherapy asked for a computerized system able to provide intelligent and continuous support in this task. One issue in building such a system is the definition of a control architecture able to manage, in real time, a treatment plan containing prescriptions and protocols in which temporal constraints are expressed in various ways, that is, which supervises the treatment, including controlling the timely execution of prescriptions and suggesting modifications to the plan according to the patient’s evolving condition. The system to solve these issues, called SEPIA, has to manage the dynamic, processes involved in patient care. Its role is to generate, in real time, commands for the patient’s care (execution of tests, administration of drugs) from a plan, and to monitor the patient’s state so that it may propose actions updating the plan. The necessity of an explicit time representation is shown. We propose using a linear time structure towards the past, with precise and absolute dates, open towards the future, and with imprecise and relative dates. Temporal relative scales are introduced to facilitate knowledge representation and access.


2007 ◽  
Vol 73 (12) ◽  
pp. 1369-1374
Author(s):  
Hiromi SATO ◽  
Yuichiro MORIKUNI ◽  
Kiyotaka KATO

Author(s):  
Vladimir V. NEKRASOV

Developing a microcontroller-based system for controlling the flywheel motor of high-dynamics spacecraft using Russian-made parts and components made it possible to make statement of the problem of searching control function for a preset rotation rate of the flywheel rotor. This paper discusses one of the possible options for mathematical study of the stated problem, namely, application of structural analysis based on graph theory. Within the framework of the stated problem a graph was constructed for generating the new required rate, while in order to consider the stochastic case option the incidence and adjacency matrices were constructed. The stated problem was solved using a power matrix which transforms a set of contiguous matrices of the graph of admissible solution edge sequences, the real-time control function was found. Based on the results of this work, operational trials were run for the developed control function of the flywheel motor rotor rotation rate, a math model was constructed for the real-time control function, and conclusions were drawn about the feasibility of implementing the results of this study. Key words: Control function, graph, incidence matrix, adjacency matrix, power matrix, microcontroller control of the flywheel motor, highly dynamic spacecraft.


Sign in / Sign up

Export Citation Format

Share Document