Active-feedback frequency-compensation technique for low-power multistage amplifiers

2003 ◽  
Vol 38 (3) ◽  
pp. 511-520 ◽  
Author(s):  
Hoi Lee ◽  
P.K.T. Mok
Author(s):  
Urvashi Bansal ◽  
Maneesha Gupta ◽  
Niranjan Raj

The importance of a transimpedance amplifier in an optical transceiver is very well known. In this paper, a novel CMOS design of the bulk-driven transimpedance amplifier (BD-TIA) is given where the bridge-shunt peaking-based frequency compensation technique is exploited to improve frequency response. A pre-existing active inductor has been used for the same. The electrical characteristics and functioning of this inductor simulator make it a suitable alternative to both floating and grounded spiral inductors. In order to verify the workability of the proposed circuit, it has been simulated with TSMC CMOS 0.18[Formula: see text][Formula: see text]m process parameters. The proposed circuit is useful in low-voltage low-power VLSI applications as it uses a single supply of 0.75[Formula: see text]V. The power consumption of BD-TIA is very low, being 0.37[Formula: see text]mW, because a standard MOSFET has been replaced by a bulk-driven MOSFET (BDMOS), while the 3-dB bandwidth is observed to be 4.5[Formula: see text]GHz. The mathematical investigation and small signal analysis show that the simulation results are in good agreement.


2010 ◽  
Vol 19 (07) ◽  
pp. 1381-1398 ◽  
Author(s):  
MOHAMMAD YAVARI

This paper presents two novel active-feedback single Miller capacitor frequency compensation techniques for low-power three-stage amplifiers. These techniques include the active-feedback single Miller capacitor frequency compensation (AFSMC) and the dual active-feedback single Miller capacitor frequency compensation (DAFSMC). In the proposed techniques, only one Miller capacitor in series with a current buffer is utilized. The main advantages of the proposed three-stage amplifiers are the enhanced unity-gain bandwidth and the reduced silicon area. Small-signal analyses are performed and the design equations are obtained. Extensive HSPICE simulation results are provided to show the usefulness of the proposed AFSMC and DAFSMC amplifiers in both large and small capacitive loads.


Sign in / Sign up

Export Citation Format

Share Document