A Single-Chip Optical Phased Array in a Wafer-Scale Silicon Photonics/CMOS 3D-Integration Platform

2019 ◽  
Vol 54 (11) ◽  
pp. 3061-3074 ◽  
Author(s):  
Taehwan Kim ◽  
Tat Ngai ◽  
Yukta Timalsina ◽  
Michael R. Watts ◽  
Vladimir Stojanovic ◽  
...  
2021 ◽  
Vol 29 (5) ◽  
pp. 7049
Author(s):  
Yaqi Liu ◽  
Zhibiao Hao ◽  
Lai Wang ◽  
Bing Xiong ◽  
Changzheng Sun ◽  
...  

Author(s):  
Christopher V. Poulton ◽  
Diedrik Vermeulen ◽  
Ehsan Hosseini ◽  
Erman Timurdogan ◽  
Zhan Su ◽  
...  

PIERS Online ◽  
2007 ◽  
Vol 3 (2) ◽  
pp. 127-131 ◽  
Author(s):  
Ying Zhao ◽  
Xiaozhou Yang ◽  
Qin Cai ◽  
Weiwei Hu

Photonics ◽  
2021 ◽  
Vol 8 (3) ◽  
pp. 63
Author(s):  
Xinyu He ◽  
Tao Dong ◽  
Jingwen He ◽  
Yue Xu

In this paper, a new design approach of optical phased array (OPA) with low side lobe level (SLL) and wide angle steering range is proposed. This approach consists of two steps. Firstly, a nonuniform antenna array is designed by optimizing the antenna spacing distribution with particle swarm optimization (PSO). Secondly, on the basis of the optimized antenna spacing distribution, PSO is further used to optimize the phase distribution of the optical antennas when the beam steers for realizing lower SLL. Based on the approach we mentioned, we design a nonuniform OPA which has 1024 optical antennas to achieve the steering range of ±60°. When the beam steering angle is 0°, 20°, 30°, 45° and 60°, the SLL obtained by optimizing phase distribution is −21.35, −18.79, −17.91, −18.46 and −18.51 dB, respectively. This kind of OPA with low SLL and wide angle steering range has broad application prospects in laser communication and lidar system.


Nanomaterials ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1646
Author(s):  
Jingya Xie ◽  
Wangcheng Ye ◽  
Linjie Zhou ◽  
Xuguang Guo ◽  
Xiaofei Zang ◽  
...  

In the last couple of decades, terahertz (THz) technologies, which lie in the frequency gap between the infrared and microwaves, have been greatly enhanced and investigated due to possible opportunities in a plethora of THz applications, such as imaging, security, and wireless communications. Photonics has led the way to the generation, modulation, and detection of THz waves such as the photomixing technique. In tandem with these investigations, researchers have been exploring ways to use silicon photonics technologies for THz applications to leverage the cost-effective large-scale fabrication and integration opportunities that it would enable. Although silicon photonics has enabled the implementation of a large number of optical components for practical use, for THz integrated systems, we still face several challenges associated with high-quality hybrid silicon lasers, conversion efficiency, device integration, and fabrication. This paper provides an overview of recent progress in THz technologies based on silicon photonics or hybrid silicon photonics, including THz generation, detection, phase modulation, intensity modulation, and passive components. As silicon-based electronic and photonic circuits are further approaching THz frequencies, one single chip with electronics, photonics, and THz functions seems inevitable, resulting in the ultimate dream of a THz electronic–photonic integrated circuit.


2016 ◽  
Vol 64 (11) ◽  
pp. 3667-3677 ◽  
Author(s):  
Chao Liu ◽  
Qiang Li ◽  
Yihu Li ◽  
Xiao-Dong Deng ◽  
Hailin Tang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document