Combining Filter-Based Feature Selection Methods and Gaussian Mixture Model for the Classification of Seismic Events From Cotopaxi Volcano

Author(s):  
Pablo Venegas ◽  
Noel Perez ◽  
Diego Benitez ◽  
Roman Lara-Cueva ◽  
Mario Ruiz
2020 ◽  
Vol 10 (5) ◽  
pp. 1033-1039
Author(s):  
Huihong Duan ◽  
Xu Wang ◽  
Xingyi He ◽  
Yonggang He ◽  
Litao Song ◽  
...  

Background: In the pulmonary nodules computer aided diagnosis systems (CAD), feature selection plays an important role in reducing the false positive rate and improving the system accuracy. To solve the problem of feature selection techniques by which the diversity of features was damaged in the process of distinguishing malignant pulmonary nodules from benign pulmonary nodules, this study developed a novel feature selection algorithm for improving the accuracy of traditional computer-aided differential diagnosis for benign and malignant classification of pulmonary nodules. Method: Firstly, we divided the extracted features of nodules into several groups by using Gaussian mixture model (GMM). Secondly, we applied Relief and sequential forward selection (SFS) algorithm to find local optimum features dataset for each group. Afterwards, we used the optimumpath forest (OPF) classifier with the found features dataset to obtain the classification results. Finally, the local optimum features dataset with the highest area under curve AUC in all groups were added into the final selected set. Results: According to collected pulmonary nodules on computed tomography (CT) scans, tested with two set of samples, we achieved an average accuracy of 89.5%, sensitivity of 87.1% and specificity of 90.9% on the first set of samples, and 90.1%, 88.7% and 92.1% on the second set of samples. The areas under the receiver operating characteristic (ROC) curves based on these two sample sets were 95.2%, and 96.3% respectively. Conclusions: This study shows that the proposed method was promising for improving the pulmonary nodules computer aided diagnosis systems performance of benign and malignant pulmonary nodules.


Detection of a vehicle is a very important aspect for traffic monitoring. It is based on the concept of moving object detection. Classifying the detected object as vehicle and class of vehicle is also having application in various application domains. This paper aims at providing an application of vehicle detection and classification concept to detect vehicles along curved roads in Indian scenarios. The main purpose is to ensure safety in such roads. Gaussian mixture model and blob analysis are the methods applied for the detection of vehicles. Morphological operations are used to eliminate noise. The moving vehicles are detected and the class of the vehicle is identified.


Sensors ◽  
2020 ◽  
Vol 20 (13) ◽  
pp. 3722
Author(s):  
Hang Ren ◽  
Taotao Hu

This paper addresses the lack of robustness of feature selection algorithms for fuzzy clustering segmentation with the Gaussian mixture model. Assuming that the neighbourhood pixels and the centre pixels obey the same distribution, a Markov method is introduced to construct the prior probability distribution and achieve the membership degree regularisation constraint for clustering sample points. Then, a noise smoothing factor is introduced to optimise the prior probability constraint. Second, a power index is constructed by combining the classification membership degree and prior probability since the Kullback–Leibler (KL) divergence of the noise smoothing factor is used to supervise the prior probability; this probability is embedded into Fuzzy Superpixels Fuzzy C-means (FSFCM) as a regular factor. This paper proposes a fuzzy clustering image segmentation algorithm based on an adaptive feature selection Gaussian mixture model with neighbourhood information constraints. To verify the segmentation performance and anti-noise robustness of the improved algorithm, the fuzzy C-means clustering algorithm Fuzzy C-means (FCM), FSFCM, Spatially Variant Finite Mixture Model (SVFMM), EGFMM, extended Gaussian mixture model (EGMM), adaptive feature selection robust fuzzy clustering segmentation algorithm (AFSFCM), fast and robust spatially constrained Gaussian mixture model (GMM) for image segmentation (FRSCGMM), and improve method are used to segment grey images containing Gaussian noise, salt-and-pepper noise, multiplicative noise and mixed noise. The peak signal-to-noise ratio (PSNR) and the error rate (MCR) are used as the theoretical basis for assessing the segmentation results. The improved algorithm indicators proposed in this paper are optimised. The improved algorithm yields increases of 0.1272–12.9803 dB, 1.5501–13.4396 dB, 1.9113–11.2613 dB and 1.0233–10.2804 dB over the other methods, and the Misclassification rate (MSR) decreases by 0.32–37.32%, 5.02–41.05%, 0.3–21.79% and 0.9–30.95% compared to that with the other algorithms. It is verified that the segmentation results of the improved algorithm have good regional consistency and strong anti-noise robustness, and they meet the needs of noisy image segmentation.


Sign in / Sign up

Export Citation Format

Share Document