High-Performance Beamforming Network Based on Si-Photonics Phase Shifters for Wideband Communications and Radar Applications

2020 ◽  
Vol 26 (5) ◽  
pp. 1-11
Author(s):  
Giovanni Serafino ◽  
Claudio Porzi ◽  
Bilal Hussain ◽  
Filippo Scotti ◽  
Fabio Falconi ◽  
...  
2012 ◽  
Vol 81 ◽  
pp. 65-74 ◽  
Author(s):  
Jacopo Iannacci ◽  
Giuseppe Resta ◽  
Paola Farinelli ◽  
Roberto Sorrentino

MEMS (MicroElectroMechanical-Systems) technology applied to the field of Radio Frequency systems (i.e. RF-MEMS) has emerged in the last 10-15 years as a valuable and viable solution to manufacture low-cost and very high-performance passive components, like variable capacitors, inductors and micro-relays, as well as complex networks, like tunable filters, reconfigurable impedance matching networks and phase shifters, and so on. The availability of such components and their integration within RF systems (e.g. radio transceivers, radars, satellites, etc.) enables boosting the characteristics and performance of telecommunication systems, addressing for instance a significant increase of their reconfigurability. The benefits resulting from the employment of RF-MEMS technology are paramount, being some of them the reduction of hardware redundancy and power consumption, along with the operability of the same RF system according to multiple standards. After framing more in detail the whole context of RF MEMS technology, this paper will provide a brief introduction on a typical RF-MEMS technology platform. Subsequently, some relevant examples of lumped RF MEMS passive elements and complex reconfigurable networks will be reported along with their measured RF performance and characteristics.


Crystals ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 355 ◽  
Author(s):  
Holger Maune ◽  
Matthias Jost ◽  
Roland Reese ◽  
Ersin Polat ◽  
Matthias Nickel ◽  
...  

Tunable Liquid Crystal (LC)-based microwave components are of increasing interest in academia and industry. Based on these components, numerous applications can be targeted such as tunable microwave filters and beam-steering antenna systems. With the commercialization of first LC-steered antennas for Ku-band e.g., by Kymeta and Alcan Systems, LC-based microwave components left early research stages behind. With the introduction of terrestrial 5G communications systems, moving to millimeter-wave communication, these systems can benefit from the unique properties of LC in terms of material quality. In this paper, we show recent developments in millimeter wave phase shifters for antenna arrays. The limits of classical high-performance metallic rectangular waveguides are clearly identified. A new implementation with dielectric waveguides is presented and compared to classic approaches.


2015 ◽  
Vol 656-657 ◽  
pp. 646-651 ◽  
Author(s):  
Tan Phuoc Dong ◽  
Huu Phu Bui

In this paper, we propose a shielding system for impulse ground penetrating radar applications (GPR). The structure of shielding system is designed for our real impulse GPR application at 200 MHz central frequency for improving the deep penetration. The shielding system makes high quality of signal transmission from transmitter antenna to receiver antenna for impulse GPR system. It not only makes lowest T/R antenna coupling, high performance of antennas, preventing external noise but also reduces unnecessary air radiation which damages to the health of GPR user. A commercial absorbing material with a short thickness of 40mm is used to reduce the reflection of upper side of antenna in the cavity of shielding system. The design procedure is derived and its performance is explained. Shielding system is designed, simulated and optimized successfully in CST 2013 software. And it is fabricated with a good measurement results.


Author(s):  
Takuma Aihara ◽  
Tatsurou Hiraki ◽  
Takuro Fujii ◽  
Koji Takeda ◽  
Takaaki Kakitsuka ◽  
...  

Author(s):  
Daniel J. Hyman ◽  
Roger Kuroda

XCom Wireless is a small business specializing in RF MEMS-enabled tunable filters and phase shifters for next-generation communications systems. XCom has developed a high-yielding flip-chip assembly and packaging technique for implementing RF MEMS devices into fully-packaged chip-scale hybrid integrated circuitry for radio and microwave frequency applications through 25 GHz. This paper discusses the packaging approach employed, performance and reliability aspects, and lessons learned. The packaging is similar to a hybrid module approach, with discrete RF MEMS component dies flip-chipped into larger packages containing large-area integrated passives. The first level of interconnect is a pure gold flip chip for high yield strength and reliability with small dies. The use of first-level flip-chip and second-level BGAs allows the extremely large bandwidth MEMS devices to maintain high performance characteristics.


Sign in / Sign up

Export Citation Format

Share Document