ESCORT: Fine-Grained Urban Crime Risk Inference Leveraging Heterogeneous Open Data

2020 ◽  
pp. 1-12
Author(s):  
Binbin Zhou ◽  
Longbiao Chen ◽  
Fangxun Zhou ◽  
Shijian Li ◽  
Sha Zhao ◽  
...  
2021 ◽  
pp. 1-18
Author(s):  
Huajun Chen ◽  
Ning Hu ◽  
Guilin Qi ◽  
Haofen Wang ◽  
Zhen Bi ◽  
...  

Abstract The early concept of knowledge graph originates from the idea of the Semantic Web, which aims at using structured graphs to model the knowledge of the world and record the relationships that exist between things. Currently publishing knowledge bases as open data on the Web has gained significant attention. In China, CIPS(Chinese Information Processing Society) launched the OpenKG in 2015 to foster the development of Chinese Open Knowledge Graphs. Unlike existing open knowledge-based programs, OpenKG chain is envisioned as a blockchain-based open knowledge infrastructure. This article introduces the first attempt at the implementation of sharing knowledge graphs on OpenKG chain, a blockchain-based trust network. We have completed the test of the underlying blockchain platform, as well as the on-chain test of OpenKG's dataset and toolset sharing as well as fine-grained knowledge crowdsourcing at the triple level. We have also proposed novel definitions: K-Point and OpenKG Token, which can be considered as a measurement of knowledge value and user value. 1033 knowledge contributors have been involved in two months of testing on the blockchain, and the cumulative number of on-chain recordings triggered by real knowledge consumers has reached 550,000 with an average daily peak value of more than 10,000. For the first time, We have tested and realized on-chain sharing of knowledge at entity/triple granularity level. At present, all operations on the datasets and toolset in OpenKG.CN, as well as the triplets in OpenBase, are recorded on the chain, and corresponding value will also be generated and assigned in a trusted mode. Via this effort, OpenKG chain looks to provide a more credible and traceable knowledge-sharing platform for the knowledge graph community.


Database ◽  
2019 ◽  
Vol 2019 ◽  
Author(s):  
Guilherme Viteri ◽  
Lisa Matthews ◽  
Thawfeek Varusai ◽  
Marc Gillespie ◽  
Marija Milacic ◽  
...  

Abstract Reactome is a manually curated, open-source, open-data knowledge base of biomolecular pathways. Reactome has always provided clear credit attribution for authors, curators and reviewers through fine-grained annotation of all three roles at the reaction and pathway level. These data are visible in the web interface and provided through the various data download formats. To enhance visibility and credit attribution for the work of authors, curators and reviewers, and to provide additional opportunities for Reactome community engagement, we have implemented key changes to Reactome: contributor names are now fully searchable in the web interface, and contributors can ‘claim’ their contributions to their ORCID profile with a few clicks. In addition, we are reaching out to domain experts to request their help in reviewing and editing Reactome pathways through a new ‘Contribution’ section, highlighting pathways which are awaiting community review. Database URL: https://reactome.org


2021 ◽  
Author(s):  
Zhenyu Fan ◽  
Yifan Liu ◽  
Junlin Che ◽  
Ning Ding ◽  
Yiming Zhai

2020 ◽  
pp. 1-11
Author(s):  
Ruth D. Carlitz ◽  
Rachael McLellan

Data availability has long been a challenge for scholars of authoritarian politics. However, the promotion of open government data—through voluntary initiatives such as the Open Government Partnership and soft conditionalities tied to foreign aid—has motivated many of the world’s more closed regimes to produce and publish fine-grained data on public goods provision, taxation, and more. While this has been a boon to scholars of autocracies, we argue that the politics of data production and dissemination in these countries create new challenges. Systematically missing or biased data may jeopardize research integrity and lead to false inferences. We provide evidence of such risks from Tanzania. The example also shows how data manipulation fits into the broader set of strategies that authoritarian leaders use to legitimate and prolong their rule. Comparing data released to the public on local tax revenues with verified internal figures, we find that the public data appear to significantly underestimate opposition performance. This can bias studies on local government capacity and risk parroting the party line in data form. We conclude by providing a framework that researchers can use to anticipate and detect manipulation in newly available data.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Binbin Zhou ◽  
Longbiao Chen ◽  
Fangxun Zhou ◽  
Shijian Li ◽  
Sha Zhao ◽  
...  
Keyword(s):  

Author(s):  
Richard S. Chemock

One of the most common tasks in a typical analysis lab is the recording of images. Many analytical techniques (TEM, SEM, and metallography for example) produce images as their primary output. Until recently, the most common method of recording images was by using film. Current PS/2R systems offer very large capacity data storage devices and high resolution displays, making it practical to work with analytical images on PS/2s, thereby sidestepping the traditional film and darkroom steps. This change in operational mode offers many benefits: cost savings, throughput, archiving and searching capabilities as well as direct incorporation of the image data into reports.The conventional way to record images involves film, either sheet film (with its associated wet chemistry) for TEM or PolaroidR film for SEM and light microscopy. Although film is inconvenient, it does have the highest quality of all available image recording techniques. The fine grained film used for TEM has a resolution that would exceed a 4096x4096x16 bit digital image.


Author(s):  
Steven D. Toteda

Zirconia oxygen sensors, in such applications as power plants and automobiles, generally utilize platinum electrodes for the catalytic reaction of dissociating O2 at the surface. The microstructure of the platinum electrode defines the resulting electrical response. The electrode must be porous enough to allow the oxygen to reach the zirconia surface while still remaining electrically continuous. At low sintering temperatures, the platinum is highly porous and fine grained. The platinum particles sinter together as the firing temperatures are increased. As the sintering temperatures are raised even further, the surface of the platinum begins to facet with lower energy surfaces. These microstructural changes can be seen in Figures 1 and 2, but the goal of the work is to characterize the microstructure by its fractal dimension and then relate the fractal dimension to the electrical response. The sensors were fabricated from zirconia powder stabilized in the cubic phase with 8 mol% percent yttria. Each substrate was sintered for 14 hours at 1200°C. The resulting zirconia pellets, 13mm in diameter and 2mm in thickness, were roughly 97 to 98 percent of theoretical density. The Engelhard #6082 platinum paste was applied to the zirconia disks after they were mechanically polished ( diamond). The electrodes were then sintered at temperatures ranging from 600°C to 1000°C. Each sensor was tested to determine the impedance response from 1Hz to 5,000Hz. These frequencies correspond to the electrode at the test temperature of 600°C.


Author(s):  
J. W. Mellowes ◽  
C. M. Chun ◽  
I. A. Aksay

Mullite (3Al2O32SiO2) can be fabricated by transient viscous sintering using composite particles which consist of inner cores of a-alumina and outer coatings of amorphous silica. Powder compacts prepared with these particles are sintered to almost full density at relatively low temperatures (~1300°C) and converted to dense, fine-grained mullite at higher temperatures (>1500°C) by reaction between the alumina core and the silica coating. In order to achieve complete mullitization, optimal conditions for coating alumina particles with amorphous silica must be achieved. Formation of amorphous silica can occur in solution (homogeneous nucleation) or on the surface of alumina (heterogeneous nucleation) depending on the degree of supersaturation of the solvent in which the particles are immersed. Successful coating of silica on alumina occurs when heterogeneous nucleation is promoted and homogeneous nucleation is suppressed. Therefore, one key to successful coating is an understanding of the factors such as pH and concentration that control silica nucleation in aqueous solutions. In the current work, we use TEM to determine the optimal conditions of this processing.


Author(s):  
C. P. Doğan ◽  
R. D. Wilson ◽  
J. A. Hawk

Capacitor Discharge Welding is a rapid solidification technique for joining conductive materials that results in a narrow fusion zone and almost no heat affected zone. As a result, the microstructures and properties of the bulk materials are essentially continuous across the weld interface. During the joining process, one of the materials to be joined acts as the anode and the other acts as the cathode. The anode and cathode are brought together with a concomitant discharge of a capacitor bank, creating an arc which melts the materials at the joining surfaces and welds them together (Fig. 1). As the electrodes impact, the arc is extinguished, and the molten interface cools at rates that can exceed 106 K/s. This process results in reduced porosity in the fusion zone, a fine-grained weldment, and a reduced tendency for hot cracking.At the U.S. Bureau of Mines, we are currently examining the possibilities of using capacitor discharge welding to join dissimilar metals, metals to intermetallics, and metals to conductive ceramics. In this particular study, we will examine the microstructural characteristics of iron-aluminum welds in detail, focussing our attention primarily on interfaces produced during the rapid solidification process.


Author(s):  
Gejing Li ◽  
D. R. Peacor ◽  
D. S. Coombs ◽  
Y. Kawachi

Recent advances in transmission electron microscopy (TEM) and analytical electron microscopy (AEM) have led to many new insights into the structural and chemical characteristics of very finegrained, optically homogeneous mineral aggregates in sedimentary and very low-grade metamorphic rocks. Chemical compositions obtained by electron microprobe analysis (EMPA) on such materials have been shown by TEM/AEM to result from beam overlap on contaminant phases on a scale below resolution of EMPA, which in turn can lead to errors in interpretation and determination of formation conditions. Here we present an in-depth analysis of the relation between AEM and EMPA data, which leads also to the definition of new mineral phases, and demonstrate the resolution power of AEM relative to EMPA in investigations of very fine-grained mineral aggregates in sedimentary and very low-grade metamorphic rocks.Celadonite, having end-member composition KMgFe3+Si4O10(OH)2, and with minor substitution of Fe2+ for Mg and Al for Fe3+ on octahedral sites, is a fine-grained mica widespread in volcanic rocks and volcaniclastic sediments which have undergone low-temperature alteration in the oceanic crust and in burial metamorphic sequences.


Sign in / Sign up

Export Citation Format

Share Document