An electrical model with junction temperature for light-emitting diodes and the impact on conversion efficiency

2005 ◽  
Vol 26 (5) ◽  
pp. 308-310 ◽  
Author(s):  
Jeong Park ◽  
C.C. Lee
2004 ◽  
Vol 831 ◽  
Author(s):  
Jeong Park ◽  
Moo Whan Shin ◽  
Chin C. Lee

ABSTRACTWe present an electrical model for quantum-well light emitting diodes (LEDs) with a current spreading layer. The LEDs studied have a Multi-Quantum Well (MQW) between p-GaN and the n-GaN grown on sapphire. The model consists of a diode connected with a series resistor resulting from the current spreading layer. Using the model, the I-V curve of the diode itself is extracted from the measured LED I-V curve. The model also includes a current equation for the diode itself which was subsequently sought to match the extracted I-V curve. In the seeking process, junction temperature (Tj) rather than case temperature (Tc) was used in the equation. The diode model allows one to calculate the reduction on conversion efficiency caused by the current spreading layer. Results show that the current spreading layer causes 20% of the efficiency reduction at Tj = 107°C. The model can be used to optimize the conversion efficiency by balancing the transparency and the resistance of current spreading layer.


2020 ◽  
pp. 1-1
Author(s):  
Demetrio Iero ◽  
Massimo Merenda ◽  
Sonia Polimeni ◽  
Riccardo Carotenuto ◽  
Francesco G. Della Corte

2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Xing-ming Long ◽  
Rui-jin Liao ◽  
Jing Zhou

The electrical-thermal characteristics of gallium-nitride- (GaN-) based light-emitting diodes (LED), packaged by chips embedded in board (EIB) technology, were investigated using a multiphysics and multiscale finite element code, COMSOL. Three-dimensional (3D) finite element model for packaging structure has been developed and optimized with forward-voltage-based junction temperatures of a 9-chip EIB sample. The sensitivity analysis of the simulation model has been conducted to estimate the current and temperature distribution changes in EIB LED as the blue LED chip (substrate, indium tin oxide (ITO)), packaging structure (bonding wire and chip numbers), and system condition (injection current) changed. This method proved the reliability of simulated results in advance and useful material parameters. Furthermore, the method suggests that the parameter match on Shockley's equation parameters, Rs, nideal, and Is, is a potential method to reduce the current crowding effect for the EIB LED. Junction temperature decreases by approximately 3 K to 10 K can be achieved by substrate thinning, ITO, and wire bonding. The nonlinear-decreasing characteristics of total thermal resistance that decrease with an increase in chip numbers are likely to improve the thermal performance of EIB LED modules.


2013 ◽  
Vol 17 (4) ◽  
pp. 363-370 ◽  
Author(s):  
Santosh M. Harish ◽  
Shuba V. Raghavan ◽  
Milind Kandlikar ◽  
Gireesh Shrimali

2011 ◽  
Vol 399-401 ◽  
pp. 1034-1038
Author(s):  
Rong Rong Zhuang ◽  
Ping Cai ◽  
Jiang Li Huang

The junction temperature of GaN-based high-power green light emitting diodes is measured using the temperature coefficients of the diode forward voltage, from changes in temperature and changes in drive current to measure the LED junction temperature and the corresponding spectral, Respectively. Experiments show that, junction temperature due to environmental temperature increased, and the red shift of the spectral peak wavelength. When low temperature or less then the rated current range, the drive current increased in junction temperature rise due to the spectral peak wavelength blue shift . When the current is increased in the range of close to or greater than the rated current, leading to the junction temperature rise will cause spectral red shift . The peak wavelengths’ shift degree of 0.0579nm / k, 0.0751 nm / k and-0.1974nm / k, -0.0915 nm / k are calculated in both cases. The phenomenon is due to the LED junction temperature increases lead to band gap shrinkage, and the result of the role of spontaneous polarization and piezoelectric polarization in Ⅲ-nitride semiconductor materials.


1996 ◽  
Vol 421 ◽  
Author(s):  
M. Osiński ◽  
D. L. Barton ◽  
C. J. Helms ◽  
P. Perlin ◽  
N. H. Berg ◽  
...  

AbstractThe reliability of devices fabricated in GaN and related alloys, especially under high current densities as would be found in lasers, has yet to be fully characterized. Our previous work [1] investigated the degradation of GaN-based blue light emitting diodes (LEDs) under high pulsed current stress. This work indicated a possible correlation between the high crystal defect density and failures caused by metal migration along these defect tubes. To assess the impact of this data on devices under more normal conditions, several LEDs from both older and more recent production lots were placed in a controlled temperature and current environment for several thousand hours. The test started with a constant 20 mA current for the first 1000 hours and continued for another 1650 hours at various currents up to 70 mA, all at a temperature of 23 °C. During this test, one of the older generation LED's output degraded by more than 50%. Subsequent failure analysis showed that this was caused by a crack which isolated part of the active region from the p-contact. The remaining LEDs were returned to life testing where the temperature was subsequently increased by 5 °C after each 500 hours of testing. The output from one of the newer LEDs dreiven at 70 mA degraded to 55% of its original value after 3600 hours and a second newer LED degraded by a similar amount after 4400 hours. The first failure, LED #16, did not exhibit a significant change in its I-V characteristics indicating that a change in the package transparency was a likely cause for the observed degradation. The second failure, LED #17, did show a noticeable change in its I-V characteristics. This device was subsequently returned to life testing where the degradation process will be monitored for further changes.


2021 ◽  
Author(s):  
C. Yuqin Zong ◽  
Cameron Miller

We have developed a new calibration capability for 200 nm to 400 nm ultraviolet light-emitting diodes (UV LEDs) using a Type D gonio-spectroradiometer. The recently-introduced mean differential continuous pulse (M-DCP) method is used to overcome the measurement difficulty associated with the initial forward voltage, VF, anomaly of a UV LED, which makes it impossible to use VF to infer junction temperature, TJ, during pulsed operation. The new measurement facility was validated indirectly by comparing the measured total luminous flux of a white LED with that measured using the NIST’s 2.5 m absolute integrating sphere. The expanded calibration uncertainty for the total radiant flux is approximately 2 % to 3 % (k = 2) depending the wavelength of the UV LED.


2017 ◽  
Vol 25 (6) ◽  
pp. 416-422 ◽  
Author(s):  
Clinton J Hayes ◽  
Kerry B Walsh ◽  
Colin V Greensill

Understanding of light-emitting diode lamp behaviour is essential to support the use of these devices as illumination sources in near infrared spectroscopy. Spectral variation in light-emitting diode peak output (680, 700, 720, 735, 760, 780, 850, 880 and 940 nm) was assessed over time from power up and with variation in environmental temperature. Initial light-emitting diode power up to full intensity occurred within a measurement cycle (12 ms), then intensity decreased exponentially over approximately 6 min, a result ascribed to an increase in junction temperature as current is passed through the light-emitting diode. Some light-emitting diodes displayed start-up output characteristics on their first use, indicating the need for a short light-emitting diode ‘burn in’ period, which was less than 24 h in all cases. Increasing the ambient temperature produced a logarithmic decrease in overall intensity of the light-emitting diodes and a linear shift to longer wavelength of the peak emission. This behaviour is consistent with the observed decrease in the IAD Index (absorbance difference between 670 nm and 720 nm, A670–A720) with increased ambient temperature, as measured by an instrument utilising light-emitting diode illumination (DA Meter). Instruments using light-emitting diodes should be designed to avoid or accommodate the effect of temperature. If accommodating temperature, as light-emitting diode manufacturer specifications are broad, characterisation is recommended.


2018 ◽  
Vol 17 (10) ◽  
pp. 1289-1300 ◽  
Author(s):  
K. Frede ◽  
M. Schreiner ◽  
R. Zrenner ◽  
J. Graefe ◽  
S. Baldermann

This study highlights the impact of LEDs on the carotenoid biosynthesis in pak choi throughout the day.


Sign in / Sign up

Export Citation Format

Share Document