Analysis of Drain Linear Current Turn-Around Effect in Off-State Stress Mode in pMOSFET

2020 ◽  
Vol 41 (6) ◽  
pp. 804-807
Author(s):  
Seung-Geun Jung ◽  
Sul-Hwan Lee ◽  
Choong-Ki Kim ◽  
Min-Soo Yoo ◽  
Hyun-Yong Yu
2013 ◽  
Vol 141 (4) ◽  
pp. 493-497 ◽  
Author(s):  
Yanyan Geng ◽  
Xiaoyu Wang ◽  
Karl L. Magleby

Large-conductance, voltage- and Ca2+-activated K+ (BK) channels display near linear current–voltage (I-V) plots for voltages between −100 and +100 mV, with an increasing sublinearity for more positive potentials. As is the case for many types of channels, BK channels are blocked at positive potentials by intracellular Ca2+ and Mg2+. This fast block progressively reduces single-channel conductance with increasing voltage, giving rise to a negative slope in the I-V plots beyond about +120 mV, depending on the concentration of the blockers. In contrast to these observations of pronounced differences in the magnitudes and shapes of I-V plots in the absence and presence of intracellular blockers, Schroeder and Hansen (2007. J. Gen. Physiol. http://dx.doi.org/10.1085/jgp.200709802) have reported identical I-V plots in the absence and presence of blockers for BK channels, with both plots having reduced conductance and negative slopes, as expected for blockers. Schroeder and Hansen included both Ca2+ and Mg2+ in the intracellular solution rather than a single blocker, and they also studied BK channels expressed from α plus β1 subunits, whereas most previous studies used only α subunits. Although it seems unlikely that these experimental differences would account for the differences in findings between previous studies and those of Schroeder and Hansen, we repeated the experiments using BK channels comprised of α plus β1 subunits with joint application of 2.5 mM Ca2+ plus 2.5 mM Mg2+, as Schroeder and Hansen did. In contrast to the findings of Schroeder and Hansen of identical I-V plots, we found marked differences in the single-channel I-V plots in the absence and presence of blockers. Consistent with previous studies, we found near linear I-V plots in the absence of blockers and greatly reduced currents and negative slopes in the presence of blockers. Hence, studies of conductance mechanisms for BK channels should exclude intracellular Ca2+/Mg2+, as they can reduce conductance and induce negative slopes.


2008 ◽  
Vol 5 (21) ◽  
pp. 908-914 ◽  
Author(s):  
Ali Mirvakili ◽  
Mohammad Yavari ◽  
Farshid Raissi
Keyword(s):  

eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Shigetomo Suyama ◽  
Alexandra Ralevski ◽  
Zhong-Wu Liu ◽  
Marcelo O Dietrich ◽  
Toshihiko Yada ◽  
...  

POMC neurons integrate metabolic signals from the periphery. Here, we show in mice that food deprivation induces a linear current-voltage relationship of AMPAR-mediated excitatory postsynaptic currents (EPSCs) in POMC neurons. Inhibition of EPSCs by IEM-1460, an antagonist of calcium-permeable (Cp) AMPARs, diminished EPSC amplitude in the fed but not in the fasted state, suggesting entry of GluR2 subunits into the AMPA receptor complex during food deprivation. Accordingly, removal of extracellular calcium from ACSF decreased the amplitude of mEPSCs in the fed but not the fasted state. Ten days of high-fat diet exposure, which was accompanied by elevated leptin levels and increased POMC neuronal activity, resulted in increased expression of Cp-AMPARs on POMC neurons. Altogether, our results show that entry of calcium via Cp-AMPARs is inherent to activation of POMC neurons, which may underlie a vulnerability of these neurons to calcium overload while activated in a sustained manner during over-nutrition.


2017 ◽  
Vol 872 ◽  
pp. 30-37
Author(s):  
Meng Han Wang ◽  
Kang Wei ◽  
Xiao Juan Li

The hot compressive deformation behaviors of ZHMn34-2-2-1 manganese brass are investigated on Thermecmastor-Z thermal simulator over wide processing domain of temperatures (923K-1073K) and strain rates (0.01s-1-10s-1). The true stress-strain curves exhibit a single peak stress, after which the stress monotonously decreases until a steady state stress occurs, indicating a typical dynamic recrystallization. A revised constitutive model coupling flow stress with strain, strain rate and deformation temperature is established with the material constants expressed by polynomial fitting of strain. Moreover, better prediction ability of the constitutive model is achieved by implementation of a simple approach for modified the Zener-Hollomon parameter considering the compensation of strain rate and temperature increment. By comparing the predicted and experimented values, the correlation coefficient and mean absolute relative error are 0.997 and 2.363%, respectively. The quantitative statistical results indicate that the proposed constitutive model can precisely characterize the hot deformation behavior of ZHMn34-2-2-1 manganese brass.


Author(s):  
Alessio Spessot ◽  
Marc Aoulaiche ◽  
Moonju Cho ◽  
Jacopo Franco ◽  
Tom Schram ◽  
...  
Keyword(s):  
High K ◽  

2011 ◽  
Vol 20 (01) ◽  
pp. 183-194 ◽  
Author(s):  
SHAYLA SAWYER ◽  
LIQIAO QIN ◽  
CHRISTOPHER SHING

Zinc Oxide ( ZnO ) nanoparticles were created by a top-down wet-chemistry synthesis process ( ZnO - A ) and then coated with polyvinyl-alcohol (PVA) ( ZnO - U ). In ZnO - U , strong UV emission was apparent while the parasitic green emission, which normally appears in ZnO suspensions, was suppressed. A standard lift-off process via e-beam lithography was used to fabricate a detector by evaporating Aluminum ( Al ) as ohmic electrodes on the ZnO nanoparticle film. Photoconductivity experiments showed that linear current-voltage response were achieved and the ZnO - U nanoparticles based detector had a ratio of UV photo-generated current more than 5 times better than that of the ZnO - A based detector. In addition, non-linear current-voltage responses were observed when interdigitated finger Gold ( Au ) contacts were deposited on ZnO - U . The UV generated current to dark current ratios were between 4 and 7 orders of magnitude, showing better performance than the photodetector with Al contacts. ZnO - U were also deposited on Gallium Nitride ( GaN ) and Aluminum Gallium Nitride ( AlGaN ) substrates to create spectrally selective photodetectors. The responsivity of detector based on AlGaN is twice that of commercial UV enhanced Silicon photodiodes. These results confirmed that ZnO nanoparticles coating with PVA is a good material for small-signal, visible blind, and wavelength selective UV detection.


Sign in / Sign up

Export Citation Format

Share Document