Hybrid Actuation with Unidirectional Clutches for Handheld Haptic Controllers

Author(s):  
Inrak Choi ◽  
Eric J. Gonzalez ◽  
Sean Follmer
Keyword(s):  
Robotica ◽  
2011 ◽  
Vol 30 (6) ◽  
pp. 941-950 ◽  
Author(s):  
Leila Notash

SUMMARYWire-actuated parallel manipulators and their failures are studied in this paper taking into consideration their failure modes. A methodology for investigating the effect of wire/actuator failures on the force/moment capability of manipulators is presented, and the criteria for full and partial recovery from these failures are established. The methodology is also applicable for the cases that the minimum norm solution for the vector of wire tensions gives a negative value for tension by treating the corresponding wire as failed. The proposed criteria are also valid for the manipulators that utilize hybrid actuation of wires and joints. Three planar wire-actuated parallel manipulators are used as the case study to illustrate the proposed methodology and criteria.


2021 ◽  
Author(s):  
Yara Almubarak ◽  
Michelle Schmutz ◽  
Miguel Perez ◽  
Shrey Shah ◽  
Yonas Tadesse

Abstract Underwater exploration or inspection requires suitable robotic systems capable of maneuvering, manipulating objects, and operating untethered in complex environmental conditions. Traditional robots have been used to perform many tasks underwater. However, they have limited degrees of freedom, manipulation capabilities, portability, and have disruptive interactions with aquatic life. Research in soft robotics seeks to incorporate ideas of the natural flexibility and agility of aquatic species into man-made technologies to improve the current capabilities of robots using biomimetics. In this paper, we present a novel design, fabrication, and testing results of an underwater robot known as Kraken that has tentacles to mimic the arm movement of an octopus. To control the arm motion, Kraken utilizes a hybrid actuation technology consisting of stepper motors and twisted and a coiled fishing line polymer muscle (TCP FL ). TCPs are becoming one of the promising actuation technologies due to their high actuation stroke, high force, light weight, and low cost. We have studied different arm stiffness configurations of the tentacles tailored to operate in different modalities (curling, twisting, and bending), to control the shape of the tentacles and grasp irregular objects delicately. Kraken uses an onboard battery, a wireless programmable joystick, a buoyancy system for depth control, all housed in a three-layer 3D printed dome-like structure. Here, we present Kraken fully functioning underwater in an Olympic-size swimming pool using its servo actuated tentacles and other test results on the TCP FL actuated tentacles in a laboratory setting. This is the first time that an embedded TCP FL actuator within elastomer has been proposed for the tentacles of an octopus-like robot along with the performance of the structures. Further, as a case study, we showed the functionality of the robot in grasping objects underwater for field robotics applications.


Aerospace ◽  
2004 ◽  
Author(s):  
Tian-Bing Xu ◽  
Ji Su

An electroactive polymer-ceramic hybrid actuation system (HYBAS) was recently developed. The HYBAS demonstrates significantly-enhanced electromechanical performance by utilizing advantages of cooperative contributions of the electromechanical responses of an electrostrictive copolymer and an electroactive single crystal. The hybrid actuation system provides not only a new type of device but also a concept to utilize different electroactive materials in a cooperative and efficient method for optimized electromechanical performance. In order to develop an effective procedure to optimize the performance of a hybrid actuation system (HYBAS), a theoretical model has been developed, based on the elastic and electromechanical properties of the materials utilized in the system and on the configuration of the device. The model also evaluates performance optimization as a function of geometric parameters, including the length of the HYBAS and the thickness ratios of the constituent components. The comparison between the model and the experimental results shows a good agreement and validates the model as an effective method for the further development of high performance actuating devices or systems for various applications.


2018 ◽  
Vol 2018 (13) ◽  
pp. 385-391
Author(s):  
Liu Zidong ◽  
Bai Zhiqiang ◽  
Xu Shuhan

2012 ◽  
Vol 430-432 ◽  
pp. 1914-1917
Author(s):  
Li Ming Yu ◽  
Shou Qiang Wei ◽  
Tian Tian Xing ◽  
Hong Liang Liu

Generalized stochastic Petri nets is adopted to develop the reliability models of two operating modes of the hybrid actuation system, which is composed of a SHA (Servo valve controlled Hydraulic Actuator), an EHA (Electro-Hydrostatic Actuator) and an EBHA (Electrical Back-up Hydrostatic Actuator).The dependability of hybrid actuation is got through the Markov chain which the Petri nets sate is isomorphic to and the Monte-Carlo simulation. Simulations are conducted to analyze influences of the operating mode and the fault coverage on system reliability of hybrid actuation system.


Sign in / Sign up

Export Citation Format

Share Document