A phase-shifting based human gait phase estimation for powered transfemoral prostheses

Author(s):  
Woolim Hong ◽  
Namita Anil Kumar ◽  
Pilwon Hur
Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 789
Author(s):  
David Kreuzer ◽  
Michael Munz

With an ageing society comes the increased prevalence of gait disorders. The restriction of mobility leads to a considerable reduction in the quality of life, because associated falls increase morbidity and mortality. Consideration of gait analysis data often alters surgical recommendations. For that reason, the early and systematic diagnostic treatment of gait disorders can spare a lot of suffering. As modern gait analysis systems are, in most cases, still very costly, many patients are not privileged enough to have access to comparable therapies. Low-cost systems such as inertial measurement units (IMUs) still pose major challenges, but offer possibilities for automatic real-time motion analysis. In this paper, we present a new approach to reliably detect human gait phases, using IMUs and machine learning methods. This approach should form the foundation of a new medical device to be used for gait analysis. A model is presented combining deep 2D-convolutional and LSTM networks to perform a classification task; it predicts the current gait phase with an accuracy of over 92% on an unseen subject, differentiating between five different phases. In the course of the paper, different approaches to optimize the performance of the model are presented and evaluated.


Author(s):  
Dario J. Villarreal ◽  
Hasan A. Poonawala ◽  
Robert D. Gregg

2021 ◽  
Vol 11 (19) ◽  
pp. 8940
Author(s):  
Wonseok Choi ◽  
Wonseok Yang ◽  
Jaeyoung Na ◽  
Giuk Lee ◽  
Woochul Nam

For gait phase estimation, time-series data of lower-limb motion can be segmented according to time windows. Time-domain features can then be calculated from the signal enclosed in a time window. A set of time-domain features is used for gait phase estimation. In this approach, the components of the feature set and the length of the time window are influential parameters for gait phase estimation. However, optimal parameter values, which determine a feature set and its values, can vary across subjects. Previously, these parameters were determined empirically, which led to a degraded estimation performance. To address this problem, this paper proposes a new feature extraction approach. Specifically, the components of the feature set are selected using a binary genetic algorithm, and the length of the time window is determined through Bayesian optimization. In this approach, the two optimization techniques are integrated to conduct a dual optimization task. The proposed method is validated using data from five walking and five running motions. For walking, the proposed approach reduced the gait phase estimation error from 1.284% to 0.910%, while for running, the error decreased from 1.997% to 1.484%.


Sign in / Sign up

Export Citation Format

Share Document