scholarly journals A Bidirectional Soft Biomimetic Hand Driven by Water Hydraulic for Dexterous Underwater Grasping

Author(s):  
Haihang Wang ◽  
He Xu ◽  
Fares Abu-Dakka ◽  
Ville Kyrki ◽  
Chen Yang ◽  
...  
Keyword(s):  
Author(s):  
Zengmeng Zhang ◽  
Jinkai Che ◽  
Peipei Liu ◽  
Yunrui Jia ◽  
Yongjun Gong

Compared with pneumatic artificial muscles (PAMs), water hydraulic artificial muscles (WHAMs) have the advantages of high force/weight ratio, high stiffness, rapid response speed, large operating pressure range, low working noise, etc. Although the physical models of PAMs have been widely studied, the model of WHAMs still need to be researched for the different structure parameters and work conditions between PAMs and WHAMs. Therefore, the geometry and the material properties need to be considered in models, including the wall thickness of rubber tube, the geometry of ends, the elastic force of rubber tube, the elongation of fibers, and the friction among fiber strands. WHAMs with different wall thickness and fiber materials were manufactured, and static characteristic experiments were performed when the actuator is static and fixed on both ends, which reflects the relationship between contraction force and pressure under the different contraction ratio. The deviations between theoretical values and experimental results were analyzed to investigate the effect of each physical factor on the modified physical model accuracy at different operating pressures. The results show the relative error of the modified physical model was 7.1% and the relative error of the ideal model was 17.4%. When contraction ratio is below 10% and operating pressure is 4 MPa, the wall thickness of rubber tube was the strongest factor on the accuracy of modified model. When the WHAM contraction ratio from 3% to 20%, the relative error between the modified physical model and the experimental data was within ±10%. Considering the various physical factors, the accuracy of the modified physical model of WHAM is improved, which lays a foundation of non-linear control of the high-strength, tightly fiber-braided and thick-walled WHAMs.


1999 ◽  
Vol 1999 (4) ◽  
pp. 549-554 ◽  
Author(s):  
Tamami TAKAHASHI ◽  
Chishiro YAMASHINA ◽  
Simpei MIYAKAWA

2013 ◽  
Vol 842 ◽  
pp. 530-535 ◽  
Author(s):  
Zeng Meng Zhang ◽  
Yong Jun Gong ◽  
Jiao Yi Hou ◽  
Han Peng Wu

The water hydraulic reciprocating plunger pump driven by linear motor is suitable to deep sea application with high efficiency and variable control. Aiming to study the principle structure and working characteristics of the pump, two patterns of valve and piston distribution were designed. And the control method and the performance were analyzed by simulation based on the AMESim model. The results show that the pressure and flow pulsation of piston type pump are much smaller than the valve type, even though the piston type is large in scale and works at low flow rate. Compared with a valve distribution tri-linear-motor reciprocating plunger pump (VDTLMP), as the flow rate of the piston distribution double linear motor reciprocating plunger pump (PDDLMP) is decreased from 36.7 L/min to 21.2 L/min theoretically, the pressure pulsation amplitude is decreased from 46% to 2%, and the flow pulsation rate is also decreased from 0.266 to 0.007. These results contribute to the research on deep-sea water hydraulic power pack and direct drive pump with high efficiency and energy conservation.


2010 ◽  
Vol 44-47 ◽  
pp. 1767-1772
Author(s):  
De Xin Zhao ◽  
Rui Bo Yuan ◽  
Jing Luo

This article describes the structure of pure water hydraulic external gear pump, structural design and calculation of parameters,analysises the mai spare part material of pure water hydraulic external gear pump and determines the type of the new engineering materials. Besides the surface treatment process of pump are discussed. Pure water hydraulic external gear pump is simulated by FLUENT, obtaining the parameters of the influence of the pump's performance.


2002 ◽  
Vol 2002 (5-1) ◽  
pp. 161-166
Author(s):  
Yoshihiro Yata ◽  
Takeshi Nakada ◽  
Yasuo Sakurai ◽  
Kazuhiro Tanaka

2021 ◽  
Vol 71 (1) ◽  
pp. 124-133
Author(s):  
B. K. Tiwari ◽  
R. Sharma

This paper presents the design and analysis of the ‘Variable Buoyancy System (VBS)’ for depth control which is an essential operation for all underwater vehicles. We use the ‘Water Hydraulic Variable Buoyancy System (WHVBS)’ method to control the buoyancy and discuss details of the system design architecture of various components of VBS. The buoyancy capacity of the developed VBS is five kilograms and the performance of the VBS in standalone mode is analysed using numerical simulation. Presented VBS is operable to control the buoyancy up to sixty meters of depth and it can be directly installed to medium size UVs. Simulation results show that the developed VBS can reduce the energy consumption significantly and higher in each cycle (i.e. descending and ascending) of the same VBS in standalone mode being operated with either propeller or thruster for sixty meters depth of operation. Our results conclude and demonstrate that the designed VBS is effective in changing the buoyancy and controlling the heave velocity efficiently and this serves the purpose of higher endurance and better performances desired in rescue/attack operations related to the UVs both in civilian and defense domains.


Sign in / Sign up

Export Citation Format

Share Document