Processing module of FFT in monolithic single-chip MEMS

Author(s):  
Ihor Prots'ko ◽  
Vasyl Teslyuk ◽  
Andrii Lozynskyi
2012 ◽  
Vol 241-244 ◽  
pp. 1139-1142
Author(s):  
Ming Ming Xiao

A new intelligent control system for a new type equipment of special-shaped stone machining is presented, it can reach high quality of intelligent machining for the special-shaped stone production. The hardware platform use universal IPC as kernel, which consists of IPC, embedded micro-computer system, SCM(Single Chip Micyoco). The CAD/CAM system consists of 3 sub-modules: graphic information processing module, 3-dimention dynamic modeling and simulating module and machining implementing module.


MRS Bulletin ◽  
1997 ◽  
Vol 22 (10) ◽  
pp. 19-27 ◽  
Author(s):  
Wei William Lee ◽  
Paul S. Ho

Continuing improvement of microprocessor performance historically involves a decrease in the device size. This allows greater device speed, an increase in device packing density, and an increase in the number of functions that can reside on a single chip. However higher packing density requires a much larger increase in the number of interconnects. This has led to an increase in the number of wiring levels and a reduction in the wiring pitch (sum of the metal line width and the spacing between the metal lines) to increase the wiring density. The problem with this approach is that—as device dimensions shrink to less than 0.25 μm (transistor gate length)—propagation delay, crosstalk noise, and power dissipation due to resistance-capacitance (RC) coupling become significant due to increased wiring capacitance, especially interline capacitance between the metal lines on the same metal level. The smaller line dimensions increase the resistivity (R) of the metal lines, and the narrower interline spacing increases the capacitance (C) between the lines. Thus although the speed of the device will increase as the feature size decreases, the interconnect delay becomes the major fraction of the total delay and limits improvement in device performance.To address these problems, new materials for use as metal lines and interlayer dielectrics (ILD) as well as alternative architectures have been proposed to replace the current Al(Cu) and SiO2 interconnect technology.


Impact ◽  
2019 ◽  
Vol 2019 (10) ◽  
pp. 44-46
Author(s):  
Masato Edahiro ◽  
Masaki Gondo

The pace of technology's advancements is ever-increasing and intelligent systems, such as those found in robots and vehicles, have become larger and more complex. These intelligent systems have a heterogeneous structure, comprising a mixture of modules such as artificial intelligence (AI) and powertrain control modules that facilitate large-scale numerical calculation and real-time periodic processing functions. Information technology expert Professor Masato Edahiro, from the Graduate School of Informatics at the Nagoya University in Japan, explains that concurrent advances in semiconductor research have led to the miniaturisation of semiconductors, allowing a greater number of processors to be mounted on a single chip, increasing potential processing power. 'In addition to general-purpose processors such as CPUs, a mixture of multiple types of accelerators such as GPGPU and FPGA has evolved, producing a more complex and heterogeneous computer architecture,' he says. Edahiro and his partners have been working on the eMBP, a model-based parallelizer (MBP) that offers a mapping system as an efficient way of automatically generating parallel code for multi- and many-core systems. This ensures that once the hardware description is written, eMBP can bridge the gap between software and hardware to ensure that not only is an efficient ecosystem achieved for hardware vendors, but the need for different software vendors to adapt code for their particular platforms is also eliminated.


2021 ◽  
Vol 1750 ◽  
pp. 012037
Author(s):  
Yong Chen ◽  
Shudong Wang ◽  
Hao Wang ◽  
Shen Liu ◽  
Runqing Li

2021 ◽  
Vol 23 (3) ◽  
pp. 1330-1336
Author(s):  
Genlai Du ◽  
Xia Hua ◽  
Bin Xu ◽  
Huan Wang ◽  
Xin Zhou ◽  
...  

We designed a technology to combined biotechnology, chemical and electrochemical techniques to achieve furoic acid bio-production from bio-toxic furfural.


2021 ◽  
Vol 13 (4) ◽  
pp. 593
Author(s):  
Lorenzo Lastilla ◽  
Valeria Belloni ◽  
Roberta Ravanelli ◽  
Mattia Crespi

DSM generation from satellite imagery is a long-lasting issue and it has been addressed in several ways over the years; however, expert and users are continuously searching for simpler but accurate and reliable software solutions. One of the latest ones is provided by the commercial software Agisoft Metashape (since version 1.6), previously known as Photoscan, which joins other already available open-source and commercial software tools. The present work aims to quantify the potential of the new Agisoft Metashape satellite processing module, considering that to the best knowledge of the authors, only two papers have been published, but none considering cross-sensor imagery. Here we investigated two different case studies to evaluate the accuracy of the generated DSMs. The first dataset consists of a triplet of Pléiades images acquired over the area of Trento and the Adige valley (Northern Italy), which is characterized by a great variety in terms of geomorphology, land uses and land covers. The second consists of a triplet composed of a WorldView-3 stereo pair and a GeoEye-1 image, acquired over the city of Matera (Southern Italy), one of the oldest settlements in the world, with the worldwide famous area of Sassi and a very rugged morphology in the surroundings. First, we carried out the accuracy assessment using the RPCs supplied by the satellite companies as part of the image metadata. Then, we refined the RPCs with an original independent terrain technique able to supply a new set of RPCs, using a set of GCPs adequately distributed across the regions of interest. The DSMs were generated both in a stereo and multi-view (triplet) configuration. We assessed the accuracy and completeness of these DSMs through a comparison with proper references, i.e., DSMs obtained through LiDAR technology. The impact of the RPC refinement on the DSM accuracy is high, ranging from 20 to 40% in terms of LE90. After the RPC refinement, we achieved an average overall LE90 <5.0 m (Trento) and <4.0 m (Matera) for the stereo configuration, and <5.5 m (Trento) and <4.5 m (Matera) for the multi-view (triplet) configuration, with an increase of completeness in the range 5–15% with respect to stereo pairs. Finally, we analyzed the impact of land cover on the accuracy of the generated DSMs; results for three classes (urban, agricultural, forest and semi-natural areas) are also supplied.


Sign in / Sign up

Export Citation Format

Share Document