Patterning high aspect silicon pillars on cantilever by metal assisted chemical etching for humidity sensing

Author(s):  
Nguyen Van Toan ◽  
Masaya Toda ◽  
Takumi Hokama ◽  
Takahito Ono
2018 ◽  
Author(s):  
Julia Sun ◽  
Benjamin Almquist

For decades, fabrication of semiconductor devices has utilized well-established etching techniques to create complex nanostructures in silicon. Of these, two of the most common are reactive ion etching in the gaseous phase and metal-assisted chemical etching (MACE) in the liquid phase. Though these two methods are highly established and characterized, there is a surprising scarcity of reports exploring the ability of metallic films to catalytically enhance the etching of silicon in dry plasmas via a MACE-like mechanism. Here, we discuss a <u>m</u>etal-<u>a</u>ssisted <u>p</u>lasma <u>e</u>tch (MAPE) performed using patterned gold films to catalyze the etching of silicon in an SF<sub>6</sub>/O<sub>2</sub> mixed plasma, selectively increasing the rate of etching by over 1000%. The degree of enhancement as a function of Au catalyst configuration and relative oxygen feed concentration is characterized, along with the catalytic activities of other common MACE metals including Ag, Pt, and Cu. Finally, methods of controlling the etch process are briefly explored to demonstrate the potential for use as a liquid-free fabrication strategy.


2019 ◽  
Vol 806 ◽  
pp. 24-29 ◽  
Author(s):  
Olga V. Volovlikova ◽  
S.A. Gavrilov ◽  
P.I. Lazarenko ◽  
A.V. Kukin ◽  
A.A. Dudin ◽  
...  

This paper examines the influence of etching regimes on the reflectance of black silicon formed by Ni-assisted chemical etching. Black silicon exhibits properties of high light absorptance. The measured minimum values of the reflectance (R-min) of black silicon with thickness of 580 nm formed by metal-assisted chemical etching (MACE) for 60 minutes at 460 lx illumination were 2,3% in the UV region (200–400 nm), 0,5% in the visible region (400–750 nm) and 0,3% in the IR region (750–1300 nm). The findings showed that the reflectance of black silicon depends on its thickness, illumination and treatment duration. In addition, the porosity and refractive index were calculated.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Yijie Li ◽  
Nguyen Van Toan ◽  
Zhuqing Wang ◽  
Khairul Fadzli Bin Samat ◽  
Takahito Ono

AbstractPorous silicon (Si) is a low thermal conductivity material, which has high potential for thermoelectric devices. However, low output performance of porous Si hinders the development of thermoelectric performance due to low electrical conductivity. The large contact resistance from nonlinear contact between porous Si and metal is one reason for the reduction of electrical conductivity. In this paper, p- and n-type porous Si were formed on Si substrate by metal-assisted chemical etching. To decrease contact resistance, p- and n-type spin on dopants are employed to dope an impurity element into p- and n-type porous Si surface, respectively. Compared to the Si substrate with undoped porous samples, ohmic contact can be obtained, and the electrical conductivity of doped p- and n-type porous Si can be improved to 1160 and 1390 S/m, respectively. Compared with the Si substrate, the special contact resistances for the doped p- and n-type porous Si layer decreases to 1.35 and 1.16 mΩ/cm2, respectively, by increasing the carrier concentration. However, the increase of the carrier concentration induces the decline of the Seebeck coefficient for p- and n-type Si substrates with doped porous Si samples to 491 and 480 μV/K, respectively. Power factor is related to the Seebeck coefficient and electrical conductivity of thermoelectric material, which is one vital factor that evaluates its output performance. Therefore, even though the Seebeck coefficient values of Si substrates with doped porous Si samples decrease, the doped porous Si layer can improve the power factor compared to undoped samples due to the enhancement of electrical conductivity, which facilitates its development for thermoelectric application.


Nano Letters ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 2310-2317
Author(s):  
Maxime Gayrard ◽  
Justine Voronkoff ◽  
Cédric Boissière ◽  
David Montero ◽  
Laurence Rozes ◽  
...  

Nanomaterials ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 1531 ◽  
Author(s):  
Shi Bai ◽  
Yongjun Du ◽  
Chunyan Wang ◽  
Jian Wu ◽  
Koji Sugioka

Surface-enhanced Raman spectroscopy (SERS) has advanced over the last four decades and has become an attractive tool for highly sensitive analysis in fields such as medicine and environmental monitoring. Recently, there has been an urgent demand for reusable and long-lived SERS substrates as a means of reducing the costs associated with this technique To this end, we fabricated a SERS substrate comprising a silicon nanowire array coated with silver nanoparticles, using metal-assisted chemical etching followed by photonic reduction. The morphology and growth mechanism of the SERS substrate were carefully examined and the performance of the fabricated SERS substrate was tested using rhodamine 6G and dopamine hydrochloride. The data show that this new substrate provides an enhancement factor of nearly 1 × 108. This work demonstrates that a silicon nanowire array coated with silver nanoparticles is sensitive and sufficiently robust to allow repeated reuse. These results suggest that this newly developed technique could allow SERS to be used in many commercial applications.


2019 ◽  
Vol 16 (3) ◽  
pp. 253-258 ◽  
Author(s):  
Yukiko Yasukawa ◽  
Hidetaka Asoh ◽  
Sachiko Ono

2016 ◽  
Vol 5 (12) ◽  
pp. P653-P656 ◽  
Author(s):  
Andreas Backes ◽  
Markus Leitgeb ◽  
Achim Bittner ◽  
Ulrich Schmid

Sign in / Sign up

Export Citation Format

Share Document