Light at 410 nm controls the growth of skin bacteria from Chelidonichthys lucerna (Osteichthyes: Triglidae)

Author(s):  
Viviana Teresa Orlandi ◽  
Fabrizio Bolognese ◽  
Nicola Trivellin ◽  
Pasquale Ricci ◽  
Roberto Carlucci
Keyword(s):  
2020 ◽  
Vol 16 ◽  
Author(s):  
Nihar Ranjan Panda ◽  
Dojalisa Sahu

Background: Metal oxide nanomaterial such as; ZnO shows novel structural, optical, electrical and antibacterial properties due to wide band gap (3.37 eV) and high excitonic binding energy (60 meV). Probing these inherent properties of nanosized ZnO with different morphology has generated new interest among researchers Objective: To investigate the size dependent functional attributes, ZnO nanorods were prepared by hydrothermal method and the photocatalytic (PC) efficiency was studied. The photoluminescence (PL) property of ZnO nanorods was also studied by recording the emission spectrum under photo-excitation. These nanorods (NRs) were coated on cotton fabric to study the effectiveness of these NRs in defending and inhibiting the growth of different bacteria Methods: The crystallographic structure and morphology of the ZnO samples were investigated by X-ray diffraction (XRD) and field emission scanning electron microscopic (FESEM) measurements. PL measurement at room temperature was undertaken by exciting the sample with light of wavelength 350 nm. The PC property of ZnO NRs was studied in degrading organic dyes like methylene blue. Bacteria like Staphylococcus aureus, Escherichia coli and Bacillus subtilis were cultured and the inhibition of growth of these bacteria was studied by the application of ZnO. To enhance the microbe defence mechanism of fabric, we coated these NRs on fabric test samples and investigated the bacterial growth on it. Results: XRD and FESEM studies reveal the dimension of the synthesized products in nano range. These nanorods are of high density and surface roughness as per the FESEM study. PL measurement shows the presence of strong UV emission at 382 nm with defect emissions in the blue-green region opening up the path for ZnO to be used in fabrication of optoelectronic devices. PC study reveals that 89% degradation of methylene blue (MB) dye is achievable in 180 min using these ZnO catalysts. The anti-bacterial study shows that the minimum inhibitory concentration (MIC) of ZnO nanorods coated on the fabric against S. aureus is found to be 3.5 mg/ml which is the minimum as compared to E. coli (7.5 mg/ml) and B. subtilis (5.5 mg/ml). The study further enunciates that fabric coated with ZnO samples exhibited considerably high inhibition activity toward S. aureus. Conclusion: The study shows that ZnO NRs can be effectively used for fabrication of UV-LASER/LED. Photocatalytic efficiency of ZnO will be useful for degradation of organic dyes controlling environment pollution. It further enunciates that fabric coated with ZnO samples exhibited considerably high inhibition activity toward S. aureus (skin bacteria) which will be helpful in defending microbes if used in surgical cotton bandages


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mio Takeuchi ◽  
Erina Fujiwara-Nagata ◽  
Taiki Katayama ◽  
Hiroaki Suetake

AbstractRainbow trout fry syndrome (RTFS) and bacterial coldwater disease (BCWD) is a globally distributed freshwater fish disease caused by Flavobacterium psychrophilum. In spite of its importance, an effective vaccine is not still available. Manipulation of the microbiome of skin, which is a primary infection gate for pathogens, could be a novel countermeasure. For example, increasing the abundance of specific antagonistic bacteria against pathogens in fish skin might be effective to prevent fish disease. Here, we combined cultivation with 16S rRNA gene amplicon sequencing to obtain insight into the skin microbiome of the rainbow trout (Oncorhynchus mykiss) and searched for skin bacteria antagonistic to F. psychrophilum. By using multiple culture media, we obtained 174 isolates spanning 18 genera. Among them, Bosea sp. OX14 and Flavobacterium sp. GL7 respectively inhibited the growth of F. psychrophilum KU190628-78 and NCIMB 1947T, and produced antagonistic compounds of < 3 kDa in size. Sequences related to our isolates comprised 4.95% of skin microbial communities, and those related to strains OX14 and GL7 respectively comprised 1.60% and 0.17% of the skin microbiome. Comparisons with previously published microbiome data detected sequences related to strains OX14 and GL7 in skin of other rainbow trout and Atlantic salmon.


Microbiome ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Yacine Amar ◽  
Ilias Lagkouvardos ◽  
Rafaela L. Silva ◽  
Oluwaseun Ayodeji Ishola ◽  
Bärbel U. Foesel ◽  
...  

Abstract Background The identification of microbiota based on next-generation sequencing (NGS) of extracted DNA has drastically improved our understanding of the role of microbial communities in health and disease. However, DNA-based microbiome analysis cannot per se differentiate between living and dead microorganisms. In environments such as the skin, host defense mechanisms including antimicrobial peptides and low cutaneous pH result in a high microbial turnover, likely resulting in high numbers of dead cells present and releasing substantial amounts of microbial DNA. NGS analyses may thus lead to inaccurate estimations of microbiome structures and consequently functional capacities. Results We investigated in this study the feasibility of a Benzonase-based approach (BDA) to pre-digest unprotected DNA, i.e., of dead microbial cells, as a method to overcome these limitations, thus offering a more accurate assessment of the living microbiome. A skin mock community as well as skin microbiome samples were analyzed using 16S rRNA gene sequencing and metagenomics sequencing after DNA extraction with and without a Benzonase digest to assess bacterial diversity patterns. The BDA method resulted in less reads from dead bacteria both in the skin mock community and skin swabs spiked with either heat-inactivated bacteria or bacterial-free DNA. This approach also efficiently depleted host DNA reads in samples with high human-to-microbial DNA ratios, with no obvious impact on the microbiome profile. We further observed that low biomass samples generate an α-diversity bias when the bacterial load is lower than 105 CFU and that Benzonase digest is not sufficient to overcome this bias. Conclusions The BDA approach enables both a better assessment of the living microbiota and depletion of host DNA reads. Graphical abstract


2021 ◽  
Vol 141 (5) ◽  
pp. S40
Author(s):  
J. Park ◽  
N.H. Schwardt ◽  
J. Jo ◽  
J. Portillo ◽  
M.A. Macgibeny ◽  
...  

2016 ◽  
Vol 18 (6) ◽  
pp. 2110-2119 ◽  
Author(s):  
Carla Souza ◽  
Evandro Watanabe ◽  
Carolina Patrícia Aires ◽  
Marilisa Guimarães Lara

2021 ◽  
Author(s):  
Ana Pereira ◽  
Marta C. Soares ◽  
Teresa Santos ◽  
Ana Poças ◽  
Marcos Pérez-Losada ◽  
...  

Abstract Fish associated microorganisms are known to be affected by the environment and other external factors, such as microbial transfer between interacting partners. One of the most iconic mutualistic interactions on coral reefs are the cleaning interactions between cleanerfishes and their clients, during which direct physical contact occurs. Here, we characterized the skin bacteria of the Caribbean cleaner sharknose goby, Elacatinus evelynae, in four coral reefs of the US Virgin Islands using sequencing of the V4 region of the 16S rRNA gene. We specifically tested the relationship between gobies’ level of interaction with clients and skin microbiota diversity and composition. Our results showed differences in microbial alpha- and beta-diversity in the skin of gobies from different reef habitats and high inter-individual variation in microbiota diversity and structure. Overall, the results showed that fish-to-fish direct contact and specifically, access to a diverse clientele, influences the bacterial diversity and structure of cleaner gobies’ skin. Because of their frequent contact with clients, and therefore, high potential for microbial exchange, cleanerfish may serve as models in future studies aiming to understand the role of social microbial transfer in reef fish communities.


Microbiome ◽  
2022 ◽  
Vol 10 (1) ◽  
Author(s):  
Rishi Chanderraj ◽  
Christopher A. Brown ◽  
Kevin Hinkle ◽  
Nicole Falkowski ◽  
Robert J. Woods ◽  
...  

Abstract Background In ecology, population density is a key feature of community analysis. Yet in studies of the gut microbiome, bacterial density is rarely reported. Studies of hospitalized patients commonly use rectal swabs for microbiome analysis, yet variation in their bacterial density—and the clinical and methodologic significance of this variation—remains undetermined. We used an ultra-sensitive quantification approach—droplet digital PCR (ddPCR)—to quantify bacterial density in rectal swabs from 118 hospitalized patients. We compared bacterial density with bacterial community composition (via 16S rRNA amplicon sequencing) and clinical data to determine if variation in bacterial density has methodological, clinical, and prognostic significance. Results Bacterial density in rectal swab specimens was highly variable, spanning five orders of magnitude (1.2 × 104–3.2 × 109 16S rRNA gene copies/sample). Low bacterial density was strongly correlated with the detection of sequencing contamination (Spearman ρ = − 0.95, p < 10−16). Low-density rectal swab communities were dominated by peri-rectal skin bacteria and sequencing contaminants (p < 0.01), suggesting that some variation in bacterial density is explained by sampling variation. Yet bacterial density was also associated with important clinical exposures, conditions, and outcomes. Bacterial density was lower among patients who had received piperacillin-tazobactam (p = 0.017) and increased among patients with multiple medical comorbidities (Charlson score, p = 0.0040) and advanced age (p = 0.043). Bacterial density at the time of hospital admission was independently associated with subsequent extraintestinal infection (p = 0.0028), even when controlled for severity of illness and comorbidities. Conclusions The bacterial density of rectal swabs is highly variable, and this variability is of methodological, clinical, and prognostic significance. Microbiome studies using rectal swabs are vulnerable to sequencing contamination and should include appropriate negative sequencing controls. Among hospitalized patients, gut bacterial density is associated with clinical exposures (antibiotics, comorbidities) and independently predicts infection risk. Bacterial density is an important and under-studied feature of gut microbiome community analysis.


Sign in / Sign up

Export Citation Format

Share Document