A dual-band compact antenna with SRR for wireless communication systems

Author(s):  
O. Benabdelouahab ◽  
I. Aznabet ◽  
M. Aznabet ◽  
O. El Mrabet ◽  
M. Khalladi ◽  
...  
2021 ◽  
Vol 10 (1) ◽  
pp. 232-240
Author(s):  
Mussa Mabrok ◽  
Zahriladha Zakaria ◽  
Yully Erwanti Masrukin ◽  
Tole Sutikno ◽  
Hussein Alsariera

Due to the progression growth of multiservice wireless communication systems in a single device, multiband bandpass filter has attract a great attention to the end user. Therefore, multiband bandpass filter is a crucial component in the multiband transceivers systems which can support multiple services in one device. This paper presents a design of dual-band bandpass filter at 2.4 GHz and 3.5 GHz for WLAN and WiMAX applications. Firstly, the wideband bandpass filter is designed at a center frequency of 3 GHz based on quarter-wavelength short circuited stub. Three types of defected microstrip structure (DMS) are implemented to produce a wide notch band, which are T-inversed shape, C-shape, and U- Shape. Based on the performance comparisons, U-shaped DMS is selected to be integrated with the bandpass filter. The designed filter achieved two passbands centered at 2.51 GHz and 3.59 GHz with 3 dB bandwidth of 15.94 % and 15.86 %. The proposed design is very useful for wireless communication systems and its applications such as WLAN and WiMAX 


IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 98786-98791 ◽  
Author(s):  
Jianchun Xu ◽  
Ke Bi ◽  
Xiaojun Zhai ◽  
Yanan Hao ◽  
Klaus D. Mcdonald-Maier

2003 ◽  
Vol 36 (5) ◽  
pp. 381-385 ◽  
Author(s):  
Cuthbert M. Allen ◽  
Atef Z. Elsherbeni ◽  
Charles E. Smith ◽  
Chun-Wen P. Huang ◽  
Kai-Fong Lee

In the last few decades, the evolution in new-fashioned wireless communication systems has actuated augmented exploration on uncomplicated dual band antennas. In this paper, a dual-band half psi shaped antenna for WLAN, Wi-Fi and WiMAX appliances is designed and analyzed. The intended antenna constitutes a half psi shaped radiating patch on the cost effective FR4-substrate with 1.6 mm thickness. A 50 ohms feed line is employed to feed half psi shaped antenna. Here a preferable impedance matching is attained by truncating a portion of the ground surface. The intended antenna has the potential to resonate between the frequency bands of 1.88 GHz-2.75 GHz and 5.17 GHz-5.74 GHz with S11 below -10 dB. The design of the antenna and its behavior over various frequencies ranges is done with the use of HFSS. The proposed antenna has higher gains at two regions. The simulated antenna is also prototyped and a fine similarity is attained in between the simulated parameters and measured parameters.


Electronics ◽  
2021 ◽  
Vol 10 (16) ◽  
pp. 1951
Author(s):  
Kicheol Yoon ◽  
Kwanggi Kim

Portable wireless communication systems are increasingly in demand in small sizes for human convenience. In wireless communication systems, the performance, size, and unit cost are very important. A band−pass filter is important to sharp cut–off frequency characteristics, size, and frequency selectivity in wireless communication systems. The band−pass filter has three types of techniques in the transmission−zero method, stub−loaded resonator, and stepped impedance resonator for the sharp cut−off frequency characteristic, adjustable bandwidth, and excellent frequency response characteristics. To obtain these characteristics, the impedance ratio and length of a stub are mainly adjusted. It also utilizes a multi–mode technique to increase bandwidth. However, it is analyzed that the problem of reducing the size of the device still remains. To solve these problems, the paper is applied to a stub−loaded resonator and a stepped impedance resonator to control the impedance ratio and the length of the stub to obtain the results of the transmission−zero method, bandwidth control, and size reduction through the folded structure. Dual−band bandwidth was secured by integrating a T−shaped band−stop filter. The designed band–pass filter has center frequencies of 243 GHz and 7.49 GHz, and the insertion loss of a proposed band−pass filter is 0.102 dB and 0.103 dB. Additionally, the return loss of a proposed band−pass filter is 19.13 dB and 19.96 dB, respectively. The bandwidth of a filter is 120% and 105%, respectively. The size of the filter is 0.0708 λg × 0.0533 λg. The designed filter has a good skirt phenomenon, small size, low insertion loss, and dual−band characteristics.


Sign in / Sign up

Export Citation Format

Share Document