Development of a telemedicine-oriented gait analysis system based on inertial sensors

Author(s):  
Andrea Pedrana ◽  
Daniele Comotti ◽  
Patrick Locatelli ◽  
Gianluca Traversi
2021 ◽  
Author(s):  
Kentaro Homan ◽  
Keizo Yamamoto ◽  
Ken Kadoya ◽  
Naoki Ishida ◽  
Norimasa Iwasaki

Abstract Background Use of a wearable gait analysis system (WGAS) is becoming common when conducting gait analysis studies due to its versatility. At the same time, its versatility raises a concern about its accuracy, because its calculations rely on assumptions embedded in its algorithms. The purpose of the present study was to validate all spatiotemporal gait parameters calculated by the WGAS by comparison with simultaneous measurements taken with an optical motion capture system (OMCS). Methods Ten young healthy volunteers wore two inertial sensors of the commercially available WGAS, Physilog®, on their feet and 23 markers for the OMCS on the lower part of the body. The participants performed at least three sets of 10-m walk tests at their self-paced speed in the laboratory equipped with 12 high-speed digital cameras with embedded force plates. To measure repeatability, all participants returned for a second day of testing within two weeks. Results All gait parameters calculated by the WGAS had a significant correlation with the ones determined by the OMCS. Bland and Altman analysis showed that the between-device agreement for all gait parameters was within clinically acceptable limits. The validity of the gait parameters generated by the WGAS was found to be excellent except for two parameters, swing width and maximal heel clearance. The repeatability of the WGAS was excellent when measured between sessions. Conclusion The present study showed that spatiotemporal gait parameters estimated by the WGAS were reasonably accurate and repeatable in healthy young adults, providing a scientific basis for applying this system to clinical studies.


2017 ◽  
Vol 62 (6) ◽  
pp. 615-622 ◽  
Author(s):  
Katja Orlowski ◽  
Falko Eckardt ◽  
Fabian Herold ◽  
Norman Aye ◽  
Jürgen Edelmann-Nusser ◽  
...  

AbstractGait analysis is an important and useful part of the daily therapeutic routine. InvestiGAIT, an inertial sensor-based system, was developed for using in different research projects with a changing number and position of sensors and because commercial systems do not capture the motion of the upper body. The current study is designed to evaluate the reliability of InvestiGAIT consisting of four off-the-shelf inertial sensors and in-house capturing and analysis software. Besides the determination of standard gait parameters, the motion of the upper body (pelvis and spine) can be investigated. Kinematic data of 25 healthy individuals (age: 25.6±3.3 years) were collected using a test-retest design with 1 week between measurement sessions. We calculated different parameters for absolute [e.g. limits of agreement (LoA)] and relative reliability [intraclass correlation coefficients (ICC)]. Our results show excellent ICC values for most of the gait parameters. Midswing height (MH), height difference (HD) of initial contact (IC) and terminal contact (TC) and stride length (SL) are the gait parameters, which did not exhibit acceptable values representing absolute reliability. Moreover, the parameters derived from the motion of the upper body (pelvis and spine) show excellent ICC values or high correlations. Our results indicate that InvestiGAIT is suitable for reliable measurement of almost all the considered gait parameters.


2017 ◽  
Vol 3 (1) ◽  
pp. 35-38
Author(s):  
David Hochmann ◽  
Lucien Opitz

Abstract:Introduction:The lack of knowledge of mechanical loads in orthotic joints can lead to oversized or breaking components. Previous studies suffer from small sample size and technical limitations. The goal of this study was to develop and validate a method that allows the direct measurement of moments in sagittal, frontal and transverse planes in knee and ankle joints of existing custom made orthoses.Methods:We developed a modular measurement system based on standard joint components, which were instrumented with strain gauges. To ensure sufficient signals and reduce cross talk an iterative approach based on FEM simulation was utilized. The system also contains inertial sensors for mobile gait analysis.Results:Instrumented joints show good results regarding linearity, hysteresis and cross talk. First pilot trials with post-polio and ICP patients demonstrated that joint loads depend on several factors and not solely on body weight. If combined with conventional gait analysis, measurement results can characterize the individual muscle situation of the patient.Conclusion:A novel method for obtaining data on loads in orthotic components was developed and validated. It provides the basis to develop safety testing standards and clinical guidelines, as well as allowing individual optimization of orthotic devices.


1999 ◽  
Vol 21 (2) ◽  
pp. 120
Author(s):  
Yanming Yang ◽  
Fang Lin ◽  
Bo Yuan ◽  
Zheng Li

2021 ◽  
Vol 29 ◽  
pp. S182-S183
Author(s):  
D. Kobsar ◽  
Z. Masood ◽  
H. Khan ◽  
N. Khalil ◽  
M. Kiwan ◽  
...  

Author(s):  
Gunjan Patel ◽  
Rajani Mullerpatan ◽  
Bela Agarwal ◽  
Triveni Shetty ◽  
Rajdeep Ojha ◽  
...  

Wearable inertial sensor-based motion analysis systems are promising alternatives to standard camera-based motion capture systems for the measurement of gait parameters and joint kinematics. These wearable sensors, unlike camera-based gold standard systems, find usefulness in outdoor natural environment along with confined indoor laboratory-based environment due to miniature size and wireless data transmission. This study reports validation of our developed (i-Sens) wearable motion analysis system against standard motion capture system. Gait analysis was performed at self-selected speed on non-disabled volunteers in indoor ( n = 15) and outdoor ( n = 8) environments. Two i-Sens units were placed at the level of knee and hip along with passive markers (for indoor study only) for simultaneous 3D motion capture using a motion capture system. Mean absolute percentage error (MAPE) was computed for spatiotemporal parameters from the i-Sens system versus the motion capture system as a true reference. Mean and standard deviation of kinematic data for a gait cycle were plotted for both systems against normative data. Joint kinematics data were analyzed to compute the root mean squared error (RMSE) and Pearson’s correlation coefficient. Kinematic plots indicate a high degree of accuracy of the i-Sens system with the reference system. Excellent positive correlation was observed between the two systems in terms of hip and knee joint angles (Indoor: hip 3.98° ± 1.03°, knee 6.48° ± 1.91°, Outdoor: hip 3.94° ± 0.78°, knee 5.82° ± 0.99°) with low RMSE. Reliability characteristics (defined using standard statistical thresholds of MAPE) of stride length, cadence, walking speed in both outdoor and indoor environment were well within the “Good” category. The i-Sens system has emerged as a potentially cost-effective, valid, accurate, and reliable alternative to expensive, standard motion capture systems for gait analysis. Further clinical trials using the i-Sens system are warranted on participants across different age groups.


2021 ◽  
Author(s):  
Nils Roth ◽  
Georg P. Wieland ◽  
Arne Kuderle ◽  
Martin Ullrich ◽  
Till Gladow ◽  
...  

2016 ◽  
Vol 34 (2) ◽  
pp. 195
Author(s):  
Bae Youl Lee ◽  
Seung Don Yoo ◽  
Seung Ah Lee ◽  
JinMann Chon ◽  
Dong Hwan Kim ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document