High frequency wideband permittivity measurements of biological substances using coplanar waveguides and application to cell suspensions

Author(s):  
Sanghyun Seo ◽  
Thomas Stintzing ◽  
Ian Block ◽  
Dimitris Pavlidis ◽  
Matthias Rieke ◽  
...  
Author(s):  
Botao Shao ◽  
Roshan Weerasekera ◽  
Li-Rong Zheng ◽  
Ran Liu ◽  
Werner Zapka ◽  
...  

Geophysics ◽  
2018 ◽  
Vol 83 (1) ◽  
pp. MR1-MR14 ◽  
Author(s):  
Ali A. Garrouch

Dimensional analysis was performed to understand the physics of ionic dispersion in reservoir rocks and to identify the factors influencing the cation exchange capacity (CEC) of these rocks. Dimensional analysis revealed the existence of a general relation independent of the unit system between two dimensionless groups denoted as the cationic dispersion number [Formula: see text] and the conductivity number [Formula: see text]. The former group [Formula: see text] stands for the ratio of the CEC to the electrical double-layer dispersion. The latter group [Formula: see text] represents the ratio of the low-frequency ionic conductivity to the high-frequency electronic polarization. Complex dielectric permittivity measurements on 121 water-saturated sandstone and carbonate rock samples were used to validate the dimensionless groups. In retrospect, dimensional analysis was useful in identifying variables influencing the CEC of hydrocarbon rocks. In particular, these variables consist of rock porosity [Formula: see text], specific surface area, and five other parameters of the Cole-Cole function, which describes the frequency dependence of the complex permittivity of rock samples in the range 10–1300 MHz. The Cole-Cole function parameters are [Formula: see text], which is a characteristic relaxation time; [Formula: see text] is the so-called spread parameter; [Formula: see text] is the real DC conductivity of water-saturated rocks; and [Formula: see text] and [Formula: see text], which are the real numbers representing the static and the high-frequency dielectric permittivities of the water-saturated rock, respectively. A general regression neural network (GRNN) model was developed to predict the CEC of shaly sandstones and carbonate rocks as a function of the variables identified by the dimensional analysis as essential in predicting the CEC. The CEC prediction capability of the GRNN model has been tested with a blind data set, and it has been compared with the CEC prediction capability using a nonlinear regression model developed in this study and using a linear regression model available in the literature. The GRNN model outperformed both of these empirical models. With the GRNN model, it is possible to obtain reliable quantitative estimates of the CEC of shaly sandstone and carbonate rocks using nondestructive frequency-dependent dielectric permittivity measurements that are rapid, economic, and accurate. In return, accurate and fast estimates of the CEC are useful in many petroleum engineering applications. They can be used to identify clay types and can also be used to quantify the volume of hydrocarbon in shaly sands using well-log resistivity data. The results of this study represent a major advantage for formation evaluation, wellbore stability analysis, and designing stimulation jobs.


1998 ◽  
Vol 46 (6) ◽  
pp. 762-768 ◽  
Author(s):  
K.J. Herrick ◽  
T.A. Schwarz ◽  
L.P.B. Katehi

2013 ◽  
Vol 2013 (1) ◽  
pp. 000228-000232
Author(s):  
Min Xu ◽  
Robert Geer ◽  
Pavel Kabos ◽  
Thomas Wallis

High frequency signal transmission through silicon substrates is critical for 3D heterogeneous integration. This paper presented fabrication, testing, and simulation of high-frequency interconnects based on through-silicon vias (TSVs) and coplanar waveguides (CPWs) for stacked 3D integrated circuits (3D ICs). Our simulation results showed that adding ground TSVs can improve signal transmission by 6× at 50GHz. We further investigated signal/ground TSV (1SXG) configurations for high-bandwidth signal transmission links. Scattering parameter measurements of fabricated 1SXG TSV structures for frequencies from 100MHz to 50GHz show low insertion loss (S21 less than −1dB up to 50GHz) and return loss (S11 lower than −15dB). These results indicate that these vertical interconnects exhibit good performance for high speed signal transmission. To understand the RF signal transmission in 3D interconnects, we used full wave electromagnetic simulation to investigate the electromagnetic field distribution associated with the ground TSV placement. We observed that the ground TSVs induced substantial overall field confinement, consistent with the experimental observation of improved signal transmission. Simulations also provided design guidance with respect to the substrate conductivity's impact on EM confinement and signal transmission.


Sensors ◽  
2020 ◽  
Vol 20 (17) ◽  
pp. 4684
Author(s):  
Rafael Pérez-Campos ◽  
José Fayos-Fernández ◽  
Antonio José Lozano-Guerrero ◽  
Antonio Martínez-González ◽  
Juan Monzó-Cabrera ◽  
...  

Permittivity of materials is of utmost importance for microwave applicators’ design and to predict high-frequency dielectric heating of materials. In the case of aromatic plant biomass, however, there are few data that help researchers design microwave applicators for microwave-assisted extraction. In this work, the permittivity of cypress and rockrose biomass samples were measured versus temperature, density, and moisture content. A resonant technique based on a coaxial bi-reentrant microwave cavity was employed to obtain the complex permittivity of biomass samples as a function of those magnitudes around the 2.45 GHz ISM frequency. The obtained measurements show that large variations for permittivity values can be found with moisture content and density changes for both cypress and rockrose biomass. Temperature also has effects in a lesser degree, although it has an important influence on the cypress biomass loss factor. Polynomial expressions fitting the experimental data were provided in order to facilitate the estimation of intermediate values, which were not explicitly arranged in this work. As a general trend, the permittivity of cypress and rockrose biomass increases with increasing values of moisture content and density, whereas the biomass loss factor increases when temperature rises.


Sign in / Sign up

Export Citation Format

Share Document