A hybrid heuristic design technique for real-time matching optimization for wearable near-field ambient RF energy harvesters

Author(s):  
Jo Bito ◽  
Manos M. Tentzeris ◽  
Apostolos Georgiadis
Author(s):  
Christian Luksch ◽  
Lukas Prost ◽  
Michael Wimmer

We present a real-time rendering technique for photometric polygonal lights. Our method uses a numerical integration technique based on a triangulation to calculate noise-free diffuse shading. We include a dynamic point in the triangulation that provides a continuous near-field illumination resembling the shape of the light emitter and its characteristics. We evaluate the accuracy of our approach with a diverse selection of photometric measurement data sets in a comprehensive benchmark framework. Furthermore, we provide an extension for specular reflection on surfaces with arbitrary roughness that facilitates the use of existing real-time shading techniques. Our technique is easy to integrate into real-time rendering systems and extends the range of possible applications with photometric area lights.


2021 ◽  
pp. 073490412199344
Author(s):  
Wolfram Jahn ◽  
Frane Sazunic ◽  
Carlos Sing-Long

Synthesising data from fire scenarios using fire simulations requires iterative running of these simulations. For real-time synthesising, faster-than-real-time simulations are thus necessary. In this article, different model types are assessed according to their complexity to determine the trade-off between the accuracy of the output and the required computing time. A threshold grid size for real-time computational fluid dynamic simulations is identified, and the implications of simplifying existing field fire models by turning off sub-models are assessed. In addition, a temperature correction for two zone models based on the conservation of energy of the hot layer is introduced, to account for spatial variations of temperature in the near field of the fire. The main conclusions are that real-time fire simulations with spatial resolution are possible and that it is not necessary to solve all fine-scale physics to reproduce temperature measurements accurately. There remains, however, a gap in performance between computational fluid dynamic models and zone models that must be explored to achieve faster-than-real-time fire simulations.


2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
K.L Hong ◽  
O Amirana ◽  
T Ransbury ◽  
B Glover

Abstract Background It has been established in previous animal and human studies that it is possible to assess lesion formation in real-time using optical means during the application of radiofrequency (RF) energy in cardiac ablation procedures. The optical interrogation was accomplished using a novel catheter and instrument system whereby the catheter has embedded optical fibers that transmit and receive light from the instrument. Purpose The aim of this study was to see if there are similar indications of lesion formation, detected by the same optical means, during the application of pulsed field ablation (PFA) energy to cause lesions through electroporation. Methods A series of 3 anesthetized pigs underwent PFA in the right atrium. An 8-electrode circular catheter was placed high in the right atrium, near the superior vena cava, to simulate pulmonary vein isolation as part of an AF ablation procedure. The optical catheter was placed adjacent to the circular catheter between stimulation electrode pairs. A bolus of adenosine was administered to create a window of asystole to avoid stimulation on the T-wave. Bipolar PFA was delivered immediately post drug infusion and the optical signature from the catheter was recorded and displayed in real-time. Electrograms were recorded and the mapping of the lesion was performed with the optical catheter at the following time intervals post PFA delivery: 0 min, 15 min, 1 hour, and 3 hours. Necropsy and histology followed the procedure. Results The optical signal is distinctly higher in intensity during the PFA pulse train. The optical signal showed an immediate significant decrease and a slow but steady decay over the mapping interval. Electrogram reduction accompanied PFA application and also showed a marked reduction over the mapping interval. The optical signal amplitudes were markedly lower when on the lesion compared to healthy non-ablated myocardium as predicted. Conclusions Preliminary results indicate that optical mapping detects immediate tissue changes during PFA at these energy levels and hence could be is a viable method of evaluating lesion formation during and after PFA energy application. The optical signal indicates that cell damage occurs immediately at these energy levels and continues to progress slowly in lesions made by PFA energy compared to those made by RF energy. The findings also suggest that optical mapping can identify acute lesions made with PFA energy in real-time implying that optical mapping could evolve as a PFA gap detector. Funding Acknowledgement Type of funding source: None


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1431
Author(s):  
Ilkyu Kim ◽  
Sun-Gyu Lee ◽  
Yong-Hyun Nam ◽  
Jeong-Hae Lee

The development of biomedical devices benefits patients by offering real-time healthcare. In particular, pacemakers have gained a great deal of attention because they offer opportunities for monitoring the patient’s vitals and biological statics in real time. One of the important factors in realizing real-time body-centric sensing is to establish a robust wireless communication link among the medical devices. In this paper, radio transmission and the optimal characteristics for impedance matching the medical telemetry of an implant are investigated. For radio transmission, an integral coupling formula based on 3D vector far-field patterns was firstly applied to compute the antenna coupling between two antennas placed inside and outside of the body. The formula provides the capability for computing the antenna coupling in the near-field and far-field region. In order to include the effects of human implantation, the far-field pattern was characterized taking into account a sphere enclosing an antenna made of human tissue. Furthermore, the characteristics of impedance matching inside the human body were studied by means of inherent wave impedances of electrical and magnetic dipoles. Here, we demonstrate that the implantation of a magnetic dipole is advantageous because it provides similar impedance characteristics to those of the human body.


2002 ◽  
Vol 41 (Part 1, No. 11A) ◽  
pp. 6380-6385
Author(s):  
Hyeong Ryeol Oh ◽  
Dae-Gap Gweon ◽  
Jun-Hee Lee ◽  
Sang-Cheon Kim ◽  
See-Hyung Lee ◽  
...  

2018 ◽  
Vol 53 (12) ◽  
pp. 3599-3612 ◽  
Author(s):  
Philipp Hillger ◽  
Ritesh Jain ◽  
Janusz Grzyb ◽  
Wolfgang Forster ◽  
Bernd Heinemann ◽  
...  

2011 ◽  
Vol 19 (9) ◽  
pp. 8277 ◽  
Author(s):  
F. Blanchard ◽  
A. Doi ◽  
T. Tanaka ◽  
H. Hirori ◽  
H. Tanaka ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document