Image-driven, model-free control of repetitive processes based on machine learning

Author(s):  
Ewaryst Rafajłowicz
2021 ◽  
Vol 8 ◽  
Author(s):  
Xiaomei Wang ◽  
Yingqi Li ◽  
Ka-Wai Kwok

Soft continuum robots have been accepted as a promising category of biomedical robots, accredited to the robots’ inherent compliance that makes them safely interact with their surroundings. In its application of minimally invasive surgery, such a continuum concept shares the same view of robotization for conventional endoscopy/laparoscopy. Different from rigid-link robots with accurate analytical kinematics/dynamics, soft robots encounter modeling uncertainties due to intrinsic and extrinsic factors, which would deteriorate the model-based control performances. However, the trade-off between flexibility and controllability of soft manipulators may not be readily optimized but would be demanded for specific kinds of modeling approaches. To this end, data-driven modeling strategies making use of machine learning algorithms would be an encouraging way out for the control of soft continuum robots. In this article, we attempt to overview the current state of kinematic/dynamic model-free control schemes for continuum manipulators, particularly by learning-based means, and discuss their similarities and differences. Perspectives and trends in the development of new control methods are also investigated through the review of existing limitations and challenges.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Lieneke K. Janssen ◽  
Florian P. Mahner ◽  
Florian Schlagenhauf ◽  
Lorenz Deserno ◽  
Annette Horstmann

An amendment to this paper has been published and can be accessed via a link at the top of the paper.


Author(s):  
Javier Loranca ◽  
Jonathan Carlos Mayo Maldonado ◽  
Gerardo Escobar ◽  
Carlos Villarreal-Hernandez ◽  
Thabiso Maupong ◽  
...  

Author(s):  
Maroua Haddar ◽  
Riadh Chaari ◽  
S Caglar Baslamisli ◽  
Fakher Chaari ◽  
Mohamed Haddar

A novel active suspension control design method is proposed for attenuating vibrations caused by road disturbance inputs in vehicle suspension systems. For the control algorithm, we propose an intelligent PD controller structure that effectively rejects online estimated disturbances. The main theoretical techniques used in this paper consist of an ultra-local model which replaces the mathematical model of quarter car system and a new algebraic estimator of unknown information. The measurement of only input and output variables of the plant is required for achieving the reference tracking task and the cancellation of unmodeled exogenous and endogenous perturbations such as roughness road variation, unpredictable variation of vehicle speed and load variation. The performance and robustness of the proposed active suspension algorithm are compared with ADRC control and LQR control. Numerical results are provided for showing the improvement of passenger comfort criteria with model-free control.


Author(s):  
Elmira Madadi ◽  
Yao Dong ◽  
Dirk Söffker

For improving the dynamics of systems in the last decades model-based control design approaches are continuously developed. The task to design an accurate model is the most relevant and related task for control engineers, which is time consuming and difficult if in the case of complex nonlinear systems a complex modeling or identification problem arises. For this reason model-free control methods become attractive as alternative to avoid modeling. This contribution focuses on design methods of a model-free adaptive-based controller and modified model-free adaptive-based controller. Modified approach is based on the same adaptive model-free control algorithm performing tracking error optimization. Both approaches are designed for non-linear systems with uncertainties and in the presence of disturbances in order to assure suitable performance as well as robustness against unknown inputs. Using this approach, the controller requires neither the information about the systems dynamical structure nor the knowledge about systems physical behaviors. The task is solved using only the system outputs and inputs, which are measurable. The effectiveness of the proposed method is validated by experiments using a three-tank system.


Sign in / Sign up

Export Citation Format

Share Document