Training-induced changes in information transfer efficiency of the brain network: A functional connectome approach

Author(s):  
Fumihiko Taya ◽  
Yu Sun ◽  
Gianluca Borghini ◽  
Pietro Arico ◽  
Fabio Babiloni ◽  
...  
2019 ◽  
Author(s):  
Mike Li ◽  
Yinuo Han ◽  
Matthew J. Aburn ◽  
Michael Breakspear ◽  
Russell A. Poldrack ◽  
...  

AbstractA key component of the flexibility and complexity of the brain is its ability to dynamically adapt its functional network structure between integrated and segregated brain states depending on the demands of different cognitive tasks. Integrated states are prevalent when performing tasks of high complexity, such as maintaining items in working memory, consistent with models of a global workspace architecture. Recent work has suggested that the balance between integration and segregation is under the control of ascending neuromodulatory systems, such as the noradrenergic system. In a previous large-scale nonlinear oscillator model of neuronal network dynamics, we showed that manipulating neural gain led to a ‘critical’ transition in phase synchrony that was associated with a shift from segregated to integrated topology, thus confirming our original prediction. In this study, we advance these results by demonstrating that the gain-mediated phase transition is characterized by a shift in the underlying dynamics of neural information processing. Specifically, the dynamics of the subcritical (segregated) regime are dominated by information storage, whereas the supercritical (integrated) regime is associated with increased information transfer (measured via transfer entropy). Operating near to the critical regime with respect to modulating neural gain would thus appear to provide computational advantages, offering flexibility in the information processing that can be performed with only subtle changes in gain control. Our results thus link studies of whole-brain network topology and the ascending arousal system with information processing dynamics, and suggest that the constraints imposed by the ascending arousal system constrain low-dimensional modes of information processing within the brain.Author summaryHigher brain function relies on a dynamic balance between functional integration and segregation. Previous work has shown that this balance is mediated in part by alterations in neural gain, which are thought to relate to projections from ascending neuromodulatory nuclei, such as the locus coeruleus. Here, we extend this work by demonstrating that the modulation of neural gain alters the information processing dynamics of the neural components of a biophysical neural model. Specifically, we find that low levels of neural gain are characterized by high Active Information Storage, whereas higher levels of neural gain are associated with an increase in inter-regional Transfer Entropy. Our results suggest that the modulation of neural gain via the ascending arousal system may fundamentally alter the information processing mode of the brain, which in turn has important implications for understanding the biophysical basis of cognition.


2021 ◽  
pp. 1-23
Author(s):  
Enrico Amico ◽  
Kausar Abbas ◽  
Duy Anh Duong-Tran ◽  
Uttara Tipnis ◽  
Meenusree Rajapandian ◽  
...  

Modeling communication dynamics in the brain is a key challenge in network neuroscience. We present here a framework that combines two measurements for any system where different communication processes are taking place on top of a fixed structural topology: Path Processing Score (PPS) estimates how much the brain signal has changed or has been transformed between any two brain regions (source and target); Path Broadcasting Strength (PBS) estimates the propagation of the signal through edges adjacent to the path being assessed. We use PPS and PBS to explore communication dynamics in large-scale brain networks. We show that brain communication dynamics can be divided into three main “communication regimes” of information transfer: absent communication (no communication happening); relay communication (information is being transferred almost intact); transducted communication (the information is being transformed). We use PBS to categorize brain regions based on the way they broadcast information. Subcortical regions are mainly direct broadcasters to multiple receivers; Temporal and frontal nodes mainly operate as broadcast relay brain stations; Visual and somato-motor cortices act as multi-channel transducted broadcasters. This work paves the way towards the field of brain network information theory by providing a principled methodology to explore communication dynamics in large-scale brain networks.


2021 ◽  
Author(s):  
Martin K. Madsen ◽  
Dea S. Stenbæk ◽  
Albin Arvidsson ◽  
Sophia Armand ◽  
Maja R. Marstrand-Joergensen ◽  
...  

AbstractThe emerging novel therapeutic psilocybin produces psychedelic effects via engagement of cerebral serotonergic targets by psilocin (active metabolite). The serotonin 2A receptor critically mediates these effects by altering distributed neural processes that manifest as increased entropy, reduced functional connectivity (FC) within discrete brain networks (i.e., reduced integrity) and increased FC between networks (i.e., reduced segregation). Reduced integrity of the default mode network (DMN) is proposed to play a particularly prominent role in psychedelic phenomenology, including perceived ego-dissolution. Here, we investigate the effects of a psychoactive oral dose of psilocybin (0.2-0.3 mg/kg) on plasma psilocin level (PPL), subjective drug intensity (SDI) and their association in fifteen healthy individuals. We further evaluate associations between these measures and resting-state FC, measured with functional magnetic resonance imaging, acquired over the course of five hours after psilocybin administration. We show that PPL and SDI correlate negatively with measures of network integrity (including DMN) and segregation, both spatially constrained and unconstrained. We also find that the executive control network and dorsal attention network desegregate, increasing connectivity with other networks and throughout the brain as a function of PPL and SDI. These findings provide direct evidence that psilocin critically shapes the time course and magnitude of changes in the cerebral functional architecture and subjective experience following psilocybin administration. Our findings provide novel insight into the neurobiological mechanisms underlying profound perceptual experiences evoked by this emerging transnosological therapeutic and implicate the expression of network integrity and segregation in the psychedelic experience and consciousness.


2020 ◽  
Author(s):  
Zeus Gracia-Tabuenca ◽  
Martha Beatriz Moreno ◽  
Fernando Barrios ◽  
Sarael Alcauter

AbstractAdolescence is a developmental period that dramatically impacts body and behavior, with pubertal hormones playing an important role not only in the morphological changes in the body but also in brain structure and function. Understanding brain development during adolescence has become a priority in neuroscience because it coincides with the onset of many psychiatric and behavioral disorders. However, little is known about how puberty influences the brain functional connectome. In this study, taking a longitudinal human sample of typically developing children and adolescents (of both sexes), we demonstrate that the development of the brain functional connectome better fits pubertal status than chronological age. In particular, centrality, segregation, efficiency, and integration of the brain functional connectome increase after the onset of the pubertal markers. We found that these effects are stronger in attention and task control networks. Lastly, after controlling for this effect, we showed that functional connectivity between these networks is related to better performance in cognitive flexibility. This study points out the importance of considering longitudinal nonlinear trends when exploring developmental trajectories, and emphasizes the impact of puberty on the functional organization of the brain in adolescence.Significance StatementUnderstanding the brain organization along development is a crucial challenge for Neuroscience. In particular, during adolescence there is a great impact in body and cognitive functions as well as substantial incidence of mental health disruptions. Here, we tested how brain organization changes along this period based on the properties of the functional connectome in a longitudinal pediatric sample. We found a nonlinear increase in the connectivity and the brain network efficiency, particularly after the onset of puberty. These effects were more prominent in association networks. In addition, higher connectivity in those areas was associated with better performance in cognitive flexibility. These results demonstrate the importance of considering pubertal assessment as well as nonlinear trends in developmental studies.


2017 ◽  
Vol 2017 ◽  
pp. 1-9
Author(s):  
Zhengkui Weng ◽  
Bin Wang ◽  
Jie Xue ◽  
Baojie Yang ◽  
Hui Liu ◽  
...  

As a complex network of many interlinked brain regions, there are some central hub regions which play key roles in the structural human brain network based on T1 and diffusion tensor imaging (DTI) technology. Since most studies about hubs location method in the whole human brain network are mainly concerned with the local properties of each single node but not the global properties of all the directly connected nodes, a novel hubs location method based on global importance contribution evaluation index is proposed in this study. The number of streamlines (NoS) is fused with normalized fractional anisotropy (FA) for more comprehensive brain bioinformation. The brain region importance contribution matrix and information transfer efficiency value are constructed, respectively, and then by combining these two factors together we can calculate the importance value of each node and locate the hubs. Profiting from both local and global features of the nodes and the multi-information fusion of human brain biosignals, the experiment results show that this method can detect the brain hubs more accurately and reasonably compared with other methods. Furthermore, the proposed location method is used in impaired brain hubs connectivity analysis of schizophrenia patients and the results are in agreement with previous studies.


Author(s):  
Moriah E. Thomason ◽  
Ava C. Palopoli ◽  
Nicki N. Jariwala ◽  
Denise M. Werchan ◽  
Alan Chen ◽  
...  

2020 ◽  
Vol 31 (6) ◽  
pp. 681-689
Author(s):  
Jalal Mirakhorli ◽  
Hamidreza Amindavar ◽  
Mojgan Mirakhorli

AbstractFunctional magnetic resonance imaging a neuroimaging technique which is used in brain disorders and dysfunction studies, has been improved in recent years by mapping the topology of the brain connections, named connectopic mapping. Based on the fact that healthy and unhealthy brain regions and functions differ slightly, studying the complex topology of the functional and structural networks in the human brain is too complicated considering the growth of evaluation measures. One of the applications of irregular graph deep learning is to analyze the human cognitive functions related to the gene expression and related distributed spatial patterns. Since a variety of brain solutions can be dynamically held in the neuronal networks of the brain with different activity patterns and functional connectivity, both node-centric and graph-centric tasks are involved in this application. In this study, we used an individual generative model and high order graph analysis for the region of interest recognition areas of the brain with abnormal connection during performing certain tasks and resting-state or decompose irregular observations. Accordingly, a high order framework of Variational Graph Autoencoder with a Gaussian distributer was proposed in the paper to analyze the functional data in brain imaging studies in which Generative Adversarial Network is employed for optimizing the latent space in the process of learning strong non-rigid graphs among large scale data. Furthermore, the possible modes of correlations were distinguished in abnormal brain connections. Our goal was to find the degree of correlation between the affected regions and their simultaneous occurrence over time. We can take advantage of this to diagnose brain diseases or show the ability of the nervous system to modify brain topology at all angles and brain plasticity according to input stimuli. In this study, we particularly focused on Alzheimer’s disease.


Sign in / Sign up

Export Citation Format

Share Document