CFD analysis of transient blood flow in a cerebral aneurysm: A comparison between a healthy and diseased model

Author(s):  
Ahmed Elakhdar ◽  
Moustafa Elhagri ◽  
Chris Naguib ◽  
Mohamed Elshabrawy
2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Kunyang Bao ◽  
Chao Liu ◽  
Jin Li ◽  
Xiang Liu ◽  
Wenzhang Luo ◽  
...  

In order to analyze the change characteristics of blood flow field in cerebral aneurysms before and after stent implantation, this study first constructed an optimized iterative reconstruction algorithm to reconstruct CT images of patients with cerebral aneurysms and used it to solve the problem of image sharpness. In addition, backprojection image reconstruction algorithm and Fourier transform analytic method were introduced. According to the CT images of cerebral arteries of patients, the lesions were presented in a three-dimensional and visual way through the reconstructed three-dimensional images, thus achieving the effects of simulation and simulation. The results showed that the sensitivity, specificity, and accuracy of the optimized iterative reconstruction algorithm were 90.78%, 83.27%, and 94.82%, which were significantly higher than those of the backprojection image reconstruction algorithm and Fourier transform analysis method, and the difference was statistically significant ( P < 0.05 ). Before operation, the blood flow velocity in the neck of aneurysm was 7.35 × 10−2 m/s, the exit velocity was 1.51 × 10−1 m/s, and the maximum velocity appeared in the upstream part of the exit. After passing through the aneurysm, the blood flow velocity began to decrease gradually, forming a vortex at the top of the tumor. After stent implantation, the neck and outlet velocities of cerebral aneurysm were 9.352 × 10−2 m/s and 1.897 × 10−2 m/s, respectively. The velocity of blood flow decreased after entering the aneurysm, and there was no vortex at the top of the aneurysm. Among the outlet velocities of arterial blood vessels, the velocity before stent implantation was significantly lower than that after stent implantation, and the difference was statistically significant ( P < 0.05 ). Compared with prestent, the shear force distribution on the wall of cerebral aneurysm showed a significant decrease, and the difference was statistically significant ( P < 0.05 ). To sum up, pelvic floor ultrasound based on hybrid iterative reconstruction algorithm has high accuracy in diagnosing the changes of blood flow field in cerebral aneurysms. The application of CT images in the diagnosis of cerebral aneurysms can objectively provide imaging data for clinical practice and has high application value.


Stroke ◽  
2021 ◽  
Vol 52 (Suppl_1) ◽  
Author(s):  
Aichi Chien ◽  
Huy Dinh ◽  
Viktor Szeder ◽  
Fernando Vinuela

Introduction: Clinical reports show that cerebral blood flow conditions are indicative of cerebral vascular disease. While methods for characterizing cerebral vascular flow have been extensively reported in the past, comparative analyses between direct flow measurements (DM) and computational flow dynamic (CFD) analysis remain limited. We hypothesize that flow data can be reliably measured both directly and through CFD in normal vessels. Methods: A left heart replicator was used as a realistic cardiac pump which maintained systolic pressure at 120 mmHg and diastolic pressure at 80 mmHg. A stenotic model with 50% stenosis for the ICA was connected to the replicator. A ComboWire was used for DM and recorded flow pressure and velocity. CFD was used to study flow. Results: In areas at the proximal end of the stenosis, the pressure and flow velocity derived from DM and CFD were in good agreement. At the end of systole and diastole, DM pressure were 145.42 mmHg and 73.53 mmHg, respectively. CFD simulation for the same system obtained the pressure at the end of systole and diastole of 147.16 mmHg and 74.64 mmHg, respectively. The velocity data collected from DM was at 15.40 cm/s and 7.74 cm/s for systolic flow and mean flow velocity. CFD measured flow was 17.85 cm/s and 11.37 cm/s, respectively. In areas at the distal end of the stenosis, pressure data showed good agreement between DM and CFD analysis. The DM were 138 and 70.81 mmHg at the end of systole and diastole, respectively; CFD simulation yielded 145.95 and 74.51 mmHg, respectively. Variations in the velocity data were observed at this location (Fig, pink arrows). Conclusion: DM of pressure showed good agreement with CFD simulation in all areas of the vessel. DM of velocity using the flow wire were highly affected by location of the measurement. CFD analysis can provide more consistent flow data for flow information collection along the vasculature.


Author(s):  
Hiroko Kadowaki

A two-dimensional ultrasonic-measurement-integrated (2D-UMI) blood flow analysis system was developed for easy acquisition of an intravascular hemodynamics, which feeds back Doppler velocity obtained by an ultrasonic measurement to a numerical blood flow simulation for clinical application. In previous study, ultrasonic measurement and 2D-UMI simulation were performed to clarify the analysis accuracy for real flow field. Additionally, spatial variation characteristics of analysis accuracy was clarified by comparison of velocity vectors between 2D-UMI and 3D-CFD analysis results corresponding to an experimental flow. However, temporal variation of analysis accuracy of 2D-UMI analysis result has not been examined in spite of essential information for reduction of experimental measurement error due to speckle noise. The aim of this study was to clarify temporal variation characteristics of analysis accuracy of each velocity component obtained in 2D-UMI blood flow analysis. Comparisons of Doppler velocity V and (u, v) velocity profiles between measurement data, 2D-UMI, and 3D-CFD analysis results were performed, and their time variations were discussed. As a result, it was clarified that temporal variation of Doppler velocity error for measurement data became larger with increasing feedback gain. Temporal variations of u and v velocity component errors for 3D-CFD analysis result showed the same tendency as that of Doppler velocity in feedback gain.


Author(s):  
Timothy J. Gundert ◽  
John F. LaDisa

Rupture of cerebral aneurysms is the second leading cause of stroke in the United States [1]. Altered hemodynamics is thought to play a role in the progression and subsequent rupture of aneurysms. Blood flow into an aneurysm can be occluded by surgically clipping the aneurysm or using endovascular devices, such as stents or coils. In saccular aneurysms, coiling alone may be a sufficient method of inducing flow stagnation in the aneurysm, causing thrombosis and preventing rupture. When treating wide-necked aneurysms, stenting is often used in conjunction with coiling to prevent the migration of coils. Many investigators have studied the ability of a stent-only treatment to favorably alter flow in aneurysms [2, 3].


Sign in / Sign up

Export Citation Format

Share Document