Double Frequency Pulse Width Modulation for Type-1 Common-ground Transformerless Inverter

Author(s):  
Lakshmi Sreekumar ◽  
Sreeraj Es
Energies ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 434 ◽  
Author(s):  
Xiumei Yue ◽  
Hongliang Wang ◽  
Xiaonan Zhu ◽  
Xinwei Wei ◽  
Yan-Fei Liu

Single-phase full-bridge transformerless topologies, such as the H5, H6, or the highly efficient and reliable inverter concept (HERIC) topologies, are commonly used for leakage current suppression for photovoltaic (PV) applications. The main derivation methodology of full-bridge topologies has been used based on both a DC-based decoupling model and an AC-based decoupling model. However, this methodology is not suited to the search for all possible topologies, and cannot verify whether they are inclusive. Part I of this paper will propose a new topology derivation methodology based on unipolar sinusoidal pulse width modulation (USPWM) to search all possible full-bridge topologies for leakage current suppression. First of all, a unified circuit model is proposed, instead of the DC- and AC-based models. Secondly, a mathematic method called the MN principle is then proposed to search for all possible topologies, and a derivation procedure is provided. It was verified that all existing topologies could be found using the proposed method; furthermore, seven new topologies were derived. The proposed topology derivation methodology is extended to search topologies under Double-Frequency USPWM (DFUSPWM). Twenty topologies under USPWM and four topologies under DFUSPWM have been derived.


2016 ◽  
Vol 9 (10) ◽  
pp. 2139-2146 ◽  
Author(s):  
Hung‐Liang Cheng ◽  
Yong‐Nong Chang ◽  
Chun‐An Cheng ◽  
Chien‐Hsuan Chang ◽  
Yu‐Hung Lin

Electronics ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 263
Author(s):  
Manyuan Ye ◽  
Wei Ren ◽  
Qiwen Wei ◽  
Guizhi Song ◽  
Zhilin Miao

Asymmetric Cascaded H-bridge (ACHB) level inverters can output more voltage waveforms with fewer cascaded units while ensuring the quality of output voltage waveforms, so they have attracted more and more attention. Taking the topology of Type-III asymmetric CHB multilevel inverters as the research object, a Modified Hybrid Frequency Pulse Width Modulation (MHF-PWM) strategy is proposed in this paper. This modulation strategy overcomes the local overshoot of low-voltage unit in the presence of traditional Hybrid Frequency Pulse Width Modulation (HF-PWM), thus completely eliminating the low frequency harmonics in the output voltage waveform of Type-III ACHB nine-level inverters, and the Total Harmonic Distortion (THD) of output line voltage of the modulation strategy is lower than that of PS-PWM strategy in the whole modulation degree, which effectively improves the quality waveform of the output line voltage. At the same time, the strategy can also improve the problems of current backflow and energy feedback caused by the high-voltage unit pouring current to the low-voltage unit, thereby reducing the imbalance of the output power of the high-voltage and low-voltage units. Finally, the Matlab/Simulink simulation model and experimental platform are established to verify the validity and practicality of the modulation strategy.


Author(s):  
Sony Prakarsa Putra ◽  
Zulwisli Zulwisli

This study aims to create a PWM inverter that can drive the Brushless Unidirectional Flow Machine (MASTS). PWM inverters are intended to correct deficiencies in six-step inverters. Inverter is a circuit that is used to convert a DC voltage source into an AC voltage with a certain frequency. The use of inverters is found in electric vehicles. The system often used to control an inverter is a Pulse Width Modulation (PWM) based control, where pulse width is used to regulate speed. The inverter is tested using 3 pairs of mosfets as a switch to control the three-phase output of the inverter. In the inverter, PWM is used to adjust the width of the frequency pulse that will be given to the mosfet. This research used 3 variations of duty cycle 30%, 60%, 90% to determine the effect of MASTS speed on PWM by using a PWM inverter. The results of this study the speed of MASTS can be influenced by changes in duty cycle, with increasing value of the duty cycle, the faster the speed of MASTS, and vice versa. Keywords:Mosfet, Sensor Hall, MASTS, PWM, Inverter.


Sign in / Sign up

Export Citation Format

Share Document