scholarly journals Channelized Hotelling observers for signal detection in stack-mode reading of volumetric images on medical displays with slow response time

Author(s):  
Ljiljana Platisa ◽  
Cedric Marchessoux ◽  
Tom Kimpe ◽  
Ewout Vansteenkiste ◽  
Aldo Badano ◽  
...  
2010 ◽  
Vol 29 (4) ◽  
pp. 214 ◽  
Author(s):  
Margaret Brown-Sica ◽  
Jeffrey Beall ◽  
Nina McHale

Response time as defined for this study is the time that it takes for all files that constitute a single webpage to travel across the Internet from a Web server to the end user’s browser. In this study, the authors tested response times on queries for identical items in five different library catalogs, one of them a next-generation (NextGen) catalog. The authors also discuss acceptable response time and how it may affect the discovery process. They suggest that librarians and vendors should develop standards for acceptable response time and use it in the product selection and development processes.


2004 ◽  
Vol 449-452 ◽  
pp. 1001-1004
Author(s):  
Dong Hyun Yoo ◽  
Moo Whan Shin

One of obstacles hindering a realization of large area size twisted nematic liquid crystal display (TN-LCD) flat panel (for example, 1100 x 1250 mm) is a slow response time. The slow response time is due to the inverse proportionality of turn on time with the frame frequency and pixel number (number of gate lines) in the twisted nematic liquid crystal system. It is known that the slow response time in the active matrix system of LCD be solved by reducing the sheet resistance of color filter electrodes. In this paper, we report on the processing details of the deposition of transparent ITO films using a DC sputtering system. The thickness of ITO layer was set for high transmittance and good conductivity and the films were characterized with respect to the transmittance and sheet resistance. The deposited ITO films show a good uniformity across the whole area and the average thickness of the ITO is about 1350 Å under the DC power of 10.7 kW. The transmittance is increased from 72.5 to about 93 % as the oxygen content is increased to 2.5 sccm for the samples without annealing. It was found that the transmittance is significantly improved by the annealing process at 220 oC for 40 min. up to 94 %. The sheet resistance is decreased with the DC power and exhibits below 22 / after the samples were annealed.


Author(s):  
Jason Ross ◽  
Tom Campbell ◽  
Basant Parida ◽  
Mark Arnoldy ◽  
Tarek Omar

From the original “steam trumpet” built for locomotives in 1832 by the Leicester and Swannington Railway to modern air-pressure horns, train warning signals have not changed significantly in nearly 200 years. The effectiveness of train warning signals has been of particular concern for trespassers listening to music with headphones. The authors have conducted research as part of a Federal Railroad Administration program to design and assess the effectiveness of candidate new emergency warning signal (EWS) sounds. This paper summarizes a literature review to understand the needs for a new EWS sound and principles of audible signal detection. Acoustic measurements were conducted of headphones to understand in-ear music levels and active and passive sound attenuation. Candidate EWS sounds were developed with a goal of maintaining the identification of a train approaching and increasing the sense of urgency and response time for trespassers to vacate the tracks. Testing of candidate EWS sounds was conducted in an audio booth and on-board a moving locomotive. The research results have shown that a new EWS sound can maintain the association of a train approaching, increase the sense of urgency, reduce the reaction time for trespassers to vacate the tracks and improve safety on railroad corridors.


2010 ◽  
Author(s):  
Jeffrey Beall ◽  
Margaret Brown-Sica ◽  
Nina McHale

2019 ◽  
Author(s):  
Emir Efendic ◽  
Philippe van de Calseyde ◽  
Anthony M Evans

Algorithms consistently perform well on various prediction tasks, but people often mistrust their advice. Here, we demonstrate one component that affects people’s trust in algorithmic predictions: response time. In seven studies (total N = 1928 with 14,184 observations), we find that people judge slowly generated predictions from algorithms as less accurate and they are less willing to rely on them. This effect reverses for human predictions, where slowly generated predictions are judged to be more accurate. In explaining this asymmetry, we find that slower response times signal the exertion of effort for both humans and algorithms. However, the relationship between perceived effort and prediction quality differs for humans and algorithms. For humans, prediction tasks are seen as difficult and effort is therefore positively correlated with the perceived quality of predictions. For algorithms, however, prediction tasks are seen as easy and effort is therefore uncorrelated to the quality of algorithmic predictions. These results underscore the complex processes and dynamics underlying people’s trust in algorithmic (and human) predictions and the cues that people use to evaluate their quality.


2021 ◽  
Author(s):  
Knut Ola Dølven ◽  
Juha Vierinen ◽  
Roberto Grilli ◽  
Jack Triest ◽  
Bénédicte Ferré

Abstract. Accurate, high resolution measurements are essential to improve our understanding of environmental processes. Several chemical sensors relying on membrane separation extraction techniques have slow response times due to a dependence on equilibrium partitioning across the membrane separating the measured medium (i.e., a measuring chamber) and the medium of interest (i.e., a solvent). We present a new technique for deconvolving slow sensor response signals using statistical inverse theory; applying a weighted linear least squares estimator with the growth-law as measurement model. The solution is regularized using model sparsity, assuming changes in the measured quantity occurs with a certain time-step, which can be selected based on domain-specific knowledge or L-curve analysis. The advantage of this method is that it: 1) models error propagation, providing an explicit uncertainty estimate of the response time corrected signal, 2) enables evaluation of the solutions self consistency, and 3) only requires instrument accuracy, response time, and data as input parameters. Functionality of the technique is demonstrated using simulated, laboratory, and field measurements. In the field experiment, the coefficient of determination (R2) of a slow response methane sensor in comparison with an alternative, fast response sensor, significantly improved from 0.18 to 0.91 after signal deconvolution. This shows how the proposed method can open up a considerably wider set of applications for sensors and methods suffering from slow response times due to a reliance on the efficacy of diffusion processes.


Author(s):  
Zhaoping Wu ◽  
Xiaoning Li ◽  
Zhonghua Guo

Abstract In current research on soft grippers, pneumatically actuated soft grippers are generally fabricated using fully soft materials, which have the advantage of flexibility as well as the disadvantages of a small gripping force and slow response speed. To improve these characteristics, a novel pneumatic soft gripper with a jointed endoskeleton structure (E-Gripper) is developed, in which the muscle actuating function has been separated from the force bearing function. The soft action of an E-Gripper finger is performed by some air chambers surrounded by multilayer rubber embedded in the restraining fiber. The gripping force is borne and transferred by the rigid endoskeleton within the E-Gripper finger. Thus, the gripping force and action response speed can be increased while the flexibility is maintained. Through experiments, the bending angle of each finger segment, response time, and gripping force of the E-Gripper have been measured, which provides a basis for designing and controlling the soft gripper. The test results have shown that the maximum gripping force of the E-Gripper can be 35 N, which is three times greater than that of a fully soft gripper (FS-Gripper) of the same size. At the maximum charging pressure of 150 kPa, the response time is 1.123 s faster than that of the FS-Gripper. The research results indicate that the flexibility of a pneumatic soft gripper is not only maintained in the case of the E-Gripper, but its gripping force is also obviously increased, and the response time is reduced. The E-Gripper thus shows great potential for future development and applications.


Sign in / Sign up

Export Citation Format

Share Document