Wireless sensor device hardware architecture — Design and analysis for high availability

Author(s):  
David Selvakumar ◽  
Kaushik Nanda ◽  
Hari Babu Pasupuleti
2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Seokhoon Kim ◽  
Hangki Joh ◽  
Seungjun Choi ◽  
Intae Ryoo

This paper presents a novel and sustainable medium access control (MAC) scheme for wireless sensor network (WSN) systems that process high-dimensional aggregated data. Based on a preamble signal and buffer threshold analysis, it maximizes the energy efficiency of the wireless sensor devices which have limited energy resources. The proposed group management MAC (GM-MAC) approach not only sets the buffer threshold value of a sensor device to be reciprocal to the preamble signal but also sets a transmittable group value to each sensor device by using the preamble signal of the sink node. The primary difference between the previous and the proposed approach is that existing state-of-the-art schemes use duty cycle and sleep mode to save energy consumption of individual sensor devices, whereas the proposed scheme employs the group management MAC scheme for sensor devices to maximize the overall energy efficiency of the whole WSN systems by minimizing the energy consumption of sensor devices located near the sink node. Performance evaluations show that the proposed scheme outperforms the previous schemes in terms of active time of sensor devices, transmission delay, control overhead, and energy consumption. Therefore, the proposed scheme is suitable for sensor devices in a variety of wireless sensor networking environments with high-dimensional data aggregate.


Author(s):  
Chaitra HV ◽  
Dr. Ravikumar G.K

<p>Wireless sensor has attained wide interest across various industries due to availability of low cost sensor device. Preserving battery/energy of these sensor device is most desired. Recently, many approaches has been presented to improve lifetime of sensor network adopting clustering technique. Cluster head selection play an important factor in improving lifetime of cluster based network. For improving cluster head selection multi-objective function are presented in recent time by adopting evolutionary computing and metaheuristic algorithm. However, the existing model incurs computation overhead due to NP-Hard problem and connectivity issues is not considered. Thus affecting network performance. To address the research issues, this work present a novel Multi-objective imperialist competitive algorithm (MOICA) for cluster head selection and routing optimization. Experiment are conducted to evaluate the performance of MOICA over LEACH in term of lifetime performance considering first sensor node death and 75% sensor node death. The outcome shows MOICA achieves significance improvement over LEACH based protocols. </p>


Author(s):  
Basavaraj G.N ◽  
Jaidhar C.D

<span>Wireless sensor network (WSN) has attained wide adoption across various sectors and is considered to be key component of future real-time application such as BigData, Internet of things (IoT) etc. The modern application requires low latency and scalable real-time data access considering heterogeneous network. However, provisioning low latency real-time data access incurs energy overhead among sensor device. Clustering technique aided in providing scalability and minimizing energy consumption among sensor device. However, it incurs energy overhead among cluster head and sensor device closer to sink. To address, many optimization technique is been presented in recent time for optimal cluster selection. However, these technique are designed considering homogenous network. To address, this work presented Low Latency and Energy Efficient Routing (LLEER) design for heterogeneous WSN. The LLEER adopts multi-objective function such as</span><span>connectivity, connection time, radio signal strength, coverage time, and network traffic for cluster head and hop node selection. Experiment are conducted to evaluate LLEER design shows significant performance improvement over state-of-art model in terms of network lifetime considering total node death, first node death, and loss of connectivity, communication overhead, and packet transmission latency. Proposed LLEER brings a good trade-off between energy efficiency, and latency requirement of future real-time application.<span>   </span></span>


Sign in / Sign up

Export Citation Format

Share Document