scholarly journals Tuning the Relative Strengths of Electromechanical Resonances Using Non-Uniform Polarization of Piezoelectric Wafers

Author(s):  
Anurup Guha ◽  
Cristian Pantea ◽  
Vamshi Krishna Chillara
Keyword(s):  
2019 ◽  
Vol 67 (3) ◽  
pp. 142-154 ◽  
Author(s):  
M. Y. Abdollahzadeh Jamalabadi ◽  
Moon K. Kwak

This study presents the analytical solution and experimental investigation of the galloping energy harvesting from oscillating elastic cantilever beam with a rigid mass. A piezoelectric wafer was attached to galloping cantilever beam to harvest vibrational energy in electric charge form. Based on Euler-Bernoulli beam assumption and piezoelectric constitutive equation, kinetic energy and potential energy of system were obtained for the proposed structure. Virtual work by generated charge and galloping force applied onto the rigid mass was obtained based on Kirchhoff's law and quasistatic assumption. Nonlinear governing electro-mechanical equations were then obtained using Hamilton's principle. As the system vibrates by self-exciting force, the fundamental mode is the only one excited by galloping. Hence, multi-degreeof-freedom equation of motion is simplified to one-degree-of-freedom model. In this study, closed-form solutions for electro-mechanical equations were obtained by using multi-scale method. Using these solutions, we can predict galloping amplitude, voltage amplitude and harvested power level. Numerical and experimental results are presented and discrepancies between experimental and numerical results are fully discussed.


Sensors ◽  
2020 ◽  
Vol 20 (22) ◽  
pp. 6438
Author(s):  
Guangtao Lu ◽  
Xin Zhu ◽  
Tao Wang ◽  
Zhiqiang Hao ◽  
Bohai Tan

A novel piezoceramic stack-based smart aggregate (PiSSA) with piezoceramic wafers in series or parallel connection is developed to increase the efficiency and output performance over the conventional smart aggregate with only one piezoelectric patch. Due to the improvement, PiSSA is suitable for situations where the stress waves easily attenuate. In PiSSA, the piezoelectric wafers are electrically connected in series or parallel, and three types of piezoelectric wafers with different electrode patterns are designed for easy connection. Based on the theory of piezo-elasticity, a simplified one-dimensional model is derived to study the electromechanical, transmitting and sensing performance of PiSSAs with the wafers in series and parallel connection, and the model was verified by experiments. The theoretical results reveal that the first resonance frequency of PiSSAs in series and parallel decreases as the number or thickness of the PZT wafers increases, and the first electromechanical coupling factor increases firstly and then decrease gradually as the number or thickness increases. The results also show that both the first resonance frequency and the first electromechanical coupling factor of PiSSA in series and parallel change no more than 0.87% as the Young’s modulus of the epoxy increases from 0.5 to 1.5 times 3.2 GPa, which is helpful for the fabrication of PiSSAs. In addition, the displacement output of PiSSAs in parallel is about 2.18–22.49 times that in series at 1–50 kHz, while the voltage output of PiSSAs in parallel is much less than that in parallel, which indicates that PiSSA in parallel is much more suitable for working as an actuator to excite stress waves and PiSSA in series is suitable for working as a sensor to detect the waves. All the results demonstrate that the connecting type, number and thickness of the PZT wafers should be carefully selected to increase the efficiency and output of PiSSA actuators and sensors. This study contributes to providing a method to investigate the characteristics and optimize the structural parameters of the proposed PiSSAs.


Sensors ◽  
2020 ◽  
Vol 20 (21) ◽  
pp. 6344
Author(s):  
Christopher Hakoda ◽  
Eric S. Davis ◽  
Cristian Pantea ◽  
Vamshi Krishna Chillara

A piezoelectric-based method for information storage is presented. It involves engineering the polarization profiles of multiple piezoelectric wafers to enhance/suppress specific electromechanical resonances. These enhanced/suppressed resonances can be used to represent multiple frequency-dependent bits, thus enabling multi-level information storage. This multi-level information storage is demonstrated by achieving three information states for a ternary encoding. Using the three information states, we present an approach to encode and decode information from a 2-by-3 array of piezoelectric wafers that we refer to as a concept Piezoelectric Quick Response (PQR) code. The scaling relation between the number of wafers used and the cumulative number of information states that can be achieved with the proposed methodology is briefly discussed. Potential applications of this methodology include tamper-evident devices, embedded product tags in manufacturing/inventory tracking, and additional layers of security with existing information storage technologies.


2020 ◽  
Vol 116 ◽  
pp. 102312
Author(s):  
Xin Zhang ◽  
Wensong Zhou ◽  
Hui Li ◽  
Yuxiang Zhang

2007 ◽  
Vol 193 (3-4) ◽  
pp. 141-150 ◽  
Author(s):  
S. von Ende ◽  
I. Schäfer ◽  
R. Lammering

1995 ◽  
Vol 406 ◽  
Author(s):  
R. N. Kleiman

AbstractWe have developed a novel fine-positioning device for scanned-probe microscopies. Instead of the conventional scanner tube made of ceramic PZT material, we have constructed analogous structures from single-crystal piezoelectric wafers. Single-crystal materials, in particular Lithium Niobate, are available which solve many of the problems inherent with PZT. In addition, their superior thermal and mechanical properties lead to improved performance in a number of significant ways. We discuss the actual implementation of this idea in the construction of a scanner, possible applications for this design, and briefly discuss results obtained.


Author(s):  
Charles Tenney ◽  
Mohammad I. Albakri ◽  
Joseph Kubalak ◽  
Logan D. Sturm ◽  
Christopher B. Williams ◽  
...  

The flexibility offered by additive manufacturing (AM) technologies to fabricate complex geometries poses several challenges to non-destructive evaluation (NDE) and quality control (QC) techniques. Existing NDE and QC techniques are not optimized for AM processes, materials, or parts. Such lack of reliable means to verify and qualify AM parts is a significant barrier to further industrial adoption of AM technologies. Electromechanical impedance measurements have been recently introduced as an alternative solution to detect anomalies in AM parts. With this approach, piezoelectric wafers bonded to the part under test are utilized as collocated sensors and actuators. Due to the coupled electromechanical characteristics of piezoelectric materials, the measured electrical impedance of the piezoelectric wafer depends on the mechanical impedance of the part under test, allowing build defects to be detected. This paper investigates the effectiveness of impedance-based NDE approach to detect internal porosity in AM parts. This type of build defects is uniquely challenging as voids are normally embedded within the structure and filled with unhardened model or supporting material. The impact of internal voids on the electromechanical impedance of AM parts is studied at several frequency ranges.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Haigen Yang ◽  
Wei Zhu

In order to accurately model the hysteresis and dynamic characteristics of piezoelectric stack actuators (PSAs), consider that a linear force and a hysteresis force will be generated by piezoelectric wafers under the voltage applied to a PSA, and the total force suffering from creep will result in the forced vibration of the two-degree-of-freedom mass-spring-damper system composed of the equivalent mass, stiffness, and damping of the piezoelectric wafers and the bonding layers. A modified comprehensive model for PSAs is put forward by using a linear function, an asymmetrical Bouc-Wen hysteresis operator, and a creep function to model the linear force, the hysteresis force, and the creep characteristics, respectively. In this way, the effect of the bonding layers on the hysteresis and dynamic characteristics of PSAs can be analyzed via the modified comprehensive model. The experimental results show that the modified comprehensive model for PSAs with the corresponding parameter identification method can accurately portray the hysteresis and dynamic characteristics of PSAs fabricated by different layering/stacking processes. Finally, the theoretical analyzing on utilizing the modified comprehensive model to linearize the hysteresis characteristics and design the dynamic characteristics of PSAs is given.


Sign in / Sign up

Export Citation Format

Share Document