Random access transmit power control algorithm of LTE system in relay network

Author(s):  
Doo Hwan Lee ◽  
Hiroyuki Morikawa
Sensors ◽  
2021 ◽  
Vol 21 (17) ◽  
pp. 5861
Author(s):  
Kisong Lee 

In this study, we consider energy-efficient wireless-powered secure communications, in which N sets of transmitter, receiver, and energy harvesting (EH) nodes exist; each EH node is allowed only to harvest energy from the transmitted signals but is not to permitted to decode information. To maximize the sum secrecy energy efficiency (SEE) of the node sets while ensuring minimum EH requirement for each EH node, we propose a distributed transmit power control algorithm using a dual method, where each transmitter adjusts its transmit power iteratively until convergence without sharing information with the other node sets. Through simulations under various environments, we show that the proposed scheme surpasses conventional schemes in terms of the sum SEE and has significantly reduced computation time compared with the optimal scheme, which suggests the effectiveness and applicability of the proposed distributed method.


Electronics ◽  
2019 ◽  
Vol 8 (8) ◽  
pp. 846 ◽  
Author(s):  
Haider ◽  
Hwang

For cellular-based vehicle-to-everything (C-V2X) communication, vital information about status and intention is periodically broadcasted by each vehicle using the cooperative awareness message (CAM) service. In C-V2X, the task of resource allocation can either be carried out in a centralized manner by the network, termed Mode 3, or by the vehicles themselves in a distributed manner without any core network support, termed Mode 4. Mode 4 scheduling is accomplished by employing sensing-based semi-persistent scheduling (SB-SPS), where the vehicles sense the medium and identify the best time-frequency resource combination for transmission of the CAM. Focusing on Mode 4 in this paper, we present a comprehensive analysis of the impact of variations in the transmit power of the vehicle on the performance of SB-SPS for C-V2X communications in various traffic scenarios through simulations. An adaptive-transmit power control (A-TPC) algorithm is presented to improve the quality of service for various large-scale traffic scenarios, where each vehicle uses real-time channel-sensing information to adjust the transmit power in order to avoid interference with neighbouring vehicles. The results demonstrate that our proposed algorithm outperforms the conventional TPC schemes.


Sign in / Sign up

Export Citation Format

Share Document