Dispersion by plane wave excitation of piezoelectric transducer arrays

1966 ◽  
Vol 54 (6) ◽  
pp. 891-892 ◽  
Author(s):  
D.E. Miller ◽  
M.R. Parker
Author(s):  
Alisa N Shpak ◽  
Mikhail V Golub ◽  
Inka Mueller ◽  
Artem Eremin ◽  
Jens Kathol ◽  
...  

This article presents the results of theoretical and experimental investigations of characteristic changes of Lamb wave excitation and scattering by a strip-like horizontal delamination in a layered elastic waveguide for Lamb waves induced by a piezoelectric wafer active sensor. The boundary integral equation method is used to describe wave propagation in an infinite layered waveguide with a delamination, while the frequency domain spectral element method is employed to model the dynamic behaviour of the piezoelectric wafer active sensor, which allows to simulate debonding between the piezoelectric wafer active sensor and the waveguide. Experimental investigations of the dynamic interaction of the piezoelectric wafer active sensor with a layered plate containing a horizontal delamination is conducted for several damage scenarios, showing a good agreement with the results obtained using the developed mathematical model. The obtained mathematical model is employed to analyse alteration of the piezo-induced Lamb waves including modes’ decomposition due to delamination. The conversion and/or conservation of the Lamb waves on account of a delamination is investigated. The electro-mechanical impedance of the piezoelectric transducer and the stress intensity factors of a delamination are analysed in dependence on the delamination location.


2014 ◽  
Vol 556-562 ◽  
pp. 4542-4546
Author(s):  
Zheng Chen ◽  
Yan Tao Duan ◽  
Ye Rong Zhang ◽  
Cheng Gao

In the three-dimensional (3-D) Laguerre-based finite-difference time-domain method, each electric field variable has the relationship with the adjacent twelve electric fields. This results in the tedious modification of field components adjacent to the total-field/scatter-field boundary in analyzing scattering problems. In addition, the plane wave excitation requires much time in evaluating the expansion coefficient of incident field which involves integral of the weighted Laguerre polynomials with respect to time. In this letter, the plane wave is introduced by defining a set of equivalent currents on a closed Huygen's surface and a computationally efficient one-dimensional auxiliary propagator is presented to speed up the plane wave excitation. Numerical results indicated that the proposed method is valid.


2004 ◽  
Author(s):  
A. Coves ◽  
A. A. San Blas ◽  
B. Gimeno ◽  
Miguel V. Andres ◽  
Vincente E. Boria ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document