scholarly journals Saturation and the limit of jet mixing enhancement by single frequency plane wave excitation - Experiment and theory

Author(s):  
GANESH RAMAN ◽  
EDWARD RICE ◽  
REDA MANKBADI
2007 ◽  
Vol 129 (7) ◽  
pp. 842-851 ◽  
Author(s):  
Uri Vandsburger ◽  
Yiqing Yuan

A new self-excited jet methodology was developed for the mixing enhancement of jet fluid with its surrounding, quiescent, stagnant, or coflowing fluid. The nozzles, of a square or rectangular cross section, featured two flexible side walls that could go into aerodynamically-induced vibration. The mixing of nozzle fluid was measured using planar laser-induced fluorescence (PLIF) from acetone seeded into the nozzle fluid. Overall, the self-excited jet showed enhanced mixing with the ambient fluid; for example, at 390Hz excitation a mixing rate enhancement of 400% at x∕D=4 and 200% at x∕D=20 over the unexcited jet. The mixing rate was sensitive to the excitation frequency, increasing by 60% with the frequency changing from 200 to 390Hz (corresponding to a Strouhal number from 0.052 to 0.1). It was also observed that the mixing rate increased with the coflow velocity. To explain the observed mixing enhancement, the flow field was studied in detail using four-element hot wire probes. This led to the observation of two pairs of counter rotating large-scale streamwise vortices as the dominant structures in the excited flow. Shedding right from the nozzle exit, these inviscid vortices provided a rapid transport of the momentum and mass between the jet and the surrounding fluid at a length scale comparable to half-nozzle diameter. Moreover, the excited jet gained as much as six times the turbulent kinetic energy at the nozzle exit over the unexcited jet. Most of the turbulent kinetic energy is concentrated within five diameters from the nozzle exit, distributed across the entire jet width, explaining the increased mixing in the near field.


2014 ◽  
Vol 556-562 ◽  
pp. 4542-4546
Author(s):  
Zheng Chen ◽  
Yan Tao Duan ◽  
Ye Rong Zhang ◽  
Cheng Gao

In the three-dimensional (3-D) Laguerre-based finite-difference time-domain method, each electric field variable has the relationship with the adjacent twelve electric fields. This results in the tedious modification of field components adjacent to the total-field/scatter-field boundary in analyzing scattering problems. In addition, the plane wave excitation requires much time in evaluating the expansion coefficient of incident field which involves integral of the weighted Laguerre polynomials with respect to time. In this letter, the plane wave is introduced by defining a set of equivalent currents on a closed Huygen's surface and a computationally efficient one-dimensional auxiliary propagator is presented to speed up the plane wave excitation. Numerical results indicated that the proposed method is valid.


2004 ◽  
Author(s):  
A. Coves ◽  
A. A. San Blas ◽  
B. Gimeno ◽  
Miguel V. Andres ◽  
Vincente E. Boria ◽  
...  

2014 ◽  
Vol 118 (1209) ◽  
pp. 1245-1278 ◽  
Author(s):  
Arun Kumar P. ◽  
E. Rathakrishnan

AbstractThe mixing promoting capability of right-angled triangular tab with sharp and truncated vertex has been investigated by placing two identical tabs at the exit of a Mach 2 axi-symmetric nozzle. The mixing promoting efficiency of these tabs have been quantified in the presence of adverse and marginally favourable pressure gradients at the nozzle exit. It was found that, at all levels of expansion of the present study though the core length reduction caused by both the tabs are appreciable, but the mixing caused by the truncated tab is superior. The mixing promoting efficiency of the truncated tab is found to increase with increase of nozzle pressure ratio (that is, decrease of adverse pressure gradient). For all the nozzle pressure ratios of the present study, the core length reduction caused by the truncated vertex tab is more than that of sharp vertex tab. As high as 84% reduction in core length is achieved with truncated vertex right-angled triangular tabs at moderately overexpanded level, corresponding to expansion levelpe/pa= 0·90. The corresponding core length reduction for right-angled triangular tabs with sharp vertex and rectangular tabs are 65% and 31%, respectively. The present results clearly show that the mixing promoting capability of the triangular tab is best than that of rectangular tabs at identical blockage and flow conditions.


2020 ◽  
Vol 19 ◽  
pp. 100315
Author(s):  
U-Wai Lok ◽  
Fang-Yu Lin ◽  
Chia-Lun Yeh ◽  
Pai-Chi Li

Sign in / Sign up

Export Citation Format

Share Document