Work function of indium oxide thin films on p-type hydrogenated amorphous silicon

Author(s):  
Masanori Semma ◽  
Kazuhiro Gotoh ◽  
Yasuyoshi Kurokawa ◽  
Noritaka Usami
2013 ◽  
Vol 1536 ◽  
pp. 195-200 ◽  
Author(s):  
Kent E. Bodurtha ◽  
J. Kakalios

ABSTRACTMixed phase thin films consisting of hydrogenated amorphous silicon (a-Si:H) in which germanium nanocrystals (nc-Ge) are embedded have been synthesized using a dual-chamber co-deposition system. Raman spectroscopy and x-ray diffraction measurements confirm the presence of 4 - 4.5 nm diameter nc-Ge homogenously embedded within the a-Si:H matrix. The conductivity and thermopower are studied as the germanium crystal fraction XGe is systematically increased. For XGe < 10%, the thermopower is n-type (as in undoped a-Si:H) while for XGe > 25% p-type transport is observed. For films with 10 < XGe < 25% the thermopower shifts from p-type to n-type as the temperature is increased. This transition is faster than expected from a standard two-channel model for charge transport.


2011 ◽  
Vol 383-390 ◽  
pp. 6980-6985
Author(s):  
Mao Yang Wu ◽  
Wei Li ◽  
Jun Wei Fu ◽  
Yi Jiao Qiu ◽  
Ya Dong Jiang

Hydrogenated amorphous silicon (a-Si:H) thin films doped with both Phosphor and Nitrogen are deposited by ratio frequency plasma enhanced chemical vapor deposition (PECVD). The effect of gas flow rate of ammonia (FrNH3) on the composition, microstructure and optical properties of the films has been investigated by X-ray photoelectron spectroscopy, Raman spectroscopy and ellipsometric spectra, respectively. The results show that with the increase of FrNH3, Si-N bonds appear while the short-range order deteriorate in the films. Besides, the optical properties of N-doped n-type a-Si:H thin films can be easily controlled in a PECVD system.


Sign in / Sign up

Export Citation Format

Share Document