scholarly journals Quantum Fan-out: Circuit Optimizations and Technology Modeling

Author(s):  
Pranav Gokhale ◽  
Samantha Koretsky ◽  
Shilin Huang ◽  
Swarnadeep Majumder ◽  
Andrew Drucker ◽  
...  
Keyword(s):  
Foods ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1128
Author(s):  
Giacomo Squeo ◽  
Davide De Angelis ◽  
Riccardo Leardi ◽  
Carmine Summo ◽  
Francesco Caponio

Background: Mixtures play a key role in Food Science and Technology. For studying them, rational approaches should be used. In detail, the experimental designs for mixtures are useful tools for studying the effects of ingredients/components in formulations. Results: Food Science and Technology is the fourth category among the total records considered in this review. The applications span from food formulation to the composition of modified atmosphere, shelf-life improvement and bioactives extraction. However, the majority of the studies regards few products and ingredients. Simplex-lattice and simplex-centroid designs are the most common used, although some optimal designs, such as the D-optimal, have also interesting applications. Finally, some issues are highlighted, which basically regard the interpretation of the models coefficients and the lack of model validation. Conclusion: In the last decade, mixture designs have been fairly used in the field of Food Science and Technology. Modeling the response(s) allows researchers to achieve a global knowledge of the system under study within the defined experimental domain. However, the majority of application has regarded limited classes of products, and thus an increase in the spectrum of applications is desired.


2019 ◽  
Vol 44 (3) ◽  
pp. 36-39
Author(s):  
Liang Zhang

To achieve the most intuitive display of interior design effect, the concept, characteristics, expression mode, application scope and basic types of virtual reality display design are expounded from the perspective of three dimension (3d) virtual reality technology, and the advantages and disadvantages of 3d modeling speed and panoramic visualization display are analyzed. The results show that through this research and practice, a series of 3d production techniques for interior design space, such as mapping technology, lighting technology, modeling technology, etc., are summarized. These technologies can effectively make use of ordinary computer to make and operate virtual reality and makes an exploratory attempt for the promotion of 3d technology in interior design industry in the future. In this study, it provides a design fulcrum for the development of indoor furniture display under the new economic conditions, which is of great practical significance for the healthy and sustainable development of interior design industry.


2014 ◽  
Vol 2014 (DPC) ◽  
pp. 001851-001892
Author(s):  
Thibault Buisson

MEMS are found in many applications, ranging from large volume consumer applications such as mobile phones to specific high end devices for defense or space. MEMS market will continue to see steady, sustainable double digit growth for the next six years, with 20% compound average annual growth in units and 13% growth in revenues, to become a $21 billion market by 2017. Automotive applications represent today around 20% of the MEMS market in revenue and are expected to see a 5.4 % growth in the next five years, which means that the penetration of MEMS devices in this market will remain limited. Today, MEMS family in cars is mainly represented by pressure sensors for Tire Pressure Monitoring and Manifold Air Pressure sensing, and accelerometers in ABS and stabilization systems. These applications are reaching maturity, which mean that their growth gets directly related to the car sales. To find new growth opportunities, system integrators have been trying to develop new MEMS based systems to enhance safety, comfort and reduce pollution and energy consumption. The presentation will show emerging applications and the challenges they face from a technical and a market point of view. Diverse electronic packages operate under exceptionally harsh environments, which require extended lifetimes, presenting a significant challenge for the microelectronics community. Operating temperatures above 200 °C together with high pressures, vibrations and potentially corrosive environments implies that some technical issues regarding the development of electronic systems that will operate at such high temperature remain. Technology based on sintering has been recently emerging for power modules, capable of withstanding up to 300 °C. Sintered Ag is one potential candidate for die attachment for extreme environments. The application of sintered Ag has proven already to significantly increase the lifetime of interconnects when compared to solder joints. Both characterization of the failure mechanisms as well as prediction of product life in such environments is critical to the long term reliability of these devices. The present work aims to develop an understanding of how and why attach materials for Si dies degrade/fail under harsh environments by investigating sintered Ag material. New failure mechanisms will become dominant in the sintered Ag technology. Modeling helps understanding how a particular system behaves if conditions are altered. Thus, a 2D axis symmetric die attach model, commonly used to represent microelectronic package assemblies, was generated using Ansys Workbench. The FE-model provided a good understanding of the effect of single parameter variation of different leadframe materials (K64, K14, and FeNi42), chip height, sintered Ag and metallization thicknesses. The FE-model provided a rapid assessment of delamination, cracking and other defects and their location within the package. The effect of the sintered Ag thickness on the plastic strain was only slight. Furthermore, on the chip side, the local thermal mismatch between the Si die and the sintered Ag was the most important loading factor. Also, thicker chips generated higher stresses. Further analysis of simulation and experiment of sintered Ag interconnects will give more insight on dominating failure mechanisms, and help reduce failure risks.


2019 ◽  
Vol 956 ◽  
pp. 332-341 ◽  
Author(s):  
Jia Fu

The performance prediction of C-S-H gel is critical to the theoretical research of cement-based materials. In the light of recent computational material technology, modeling from nano-scale to micro-scale to predict mechanical properties of structure has become research hotspots. This paper aims to find the inter-linkages between the monolithic "glouble" C-S-H at nano-scale and the low/high density C-S-H at the micro-scale by step to step method, and to find a reliable experimental verification method. Above all, the basic structure of tobermorite and the "glouble" C-S-H model at nano-scale are discussed. At this scale, a "glouble" C-S-H structure of about 5.5 nm3 was established based on the 11Å tobermorite crystal, and the elastic modulus ​​of the isotropic "glouble" is obtained by simulation. Besides, by considering the effect of porosity on the low/high density of the gel morphology, the C-S-H phase at micro-scale can be reversely characterized by the "glouble". By setting different porosities and using Self-Consistent and Mori-Tanaka schemes, elastic moduli of the low density and high density C-S-H ​​from that of "glouble" are predicted, which are used to compare with the experimental values of the outer and inner C-S-H. Moreover, the nanoindentation simulation is carried out, where the simulated P-h curve is in good agreement with the accurate experimental curve in nanoindentation experiment by the regional indentation technique(RET), thus the rationality of the "glouble" structure modeled is verified and the feasibility of Jennings model is proved. Finally, the studies from the obtained ideal "glouble" model to the C-S-H phase performance has realized the mechanical properties prediction of the C-S-H structure from nano-scale to micro-scale, which has great theoretical significance for the C-S-H structural strengthening research.


2011 ◽  
Vol 1291 ◽  
Author(s):  
L. Magdenko ◽  
E. Popova ◽  
W. Smigaj ◽  
P. Beauvillain ◽  
N. Keller ◽  
...  

ABSTRACTMagneto-optical garnet based optical circulator was designed and fabricated with wafer-scale technology. Modeling and simulation strategy is established for the optimization of a new design of circulator based on ring cavity. Wafer-scale technological process is developed and demonstrated allowing fabrication of the optimized BIG/GGG buried ring circulator.


Sign in / Sign up

Export Citation Format

Share Document