Short-range multi-mode continuous-wave radar for vital sign measurement and imaging

Author(s):  
Avik Santra ◽  
Raghavendran Vagarappan Ulaganathan ◽  
Thomas Finke ◽  
Ashutosh Baheti ◽  
Dennis Noppeney ◽  
...  
Sensors ◽  
2019 ◽  
Vol 19 (6) ◽  
pp. 1331
Author(s):  
Massimiliano Pieraccini ◽  
Lapo Miccinesi ◽  
Neda Rojhani

Step-frequency continuous-wave (SFCW) modulation can have a role in the detection of small unmanned aerial vehicles (UAV) at short range (less than 1–2 km). In this paper, the theory of SFCW range detection is reviewed, and a specific method for correcting the possible range shift due to the Doppler effect is devised. The proposed method was tested in a controlled experimental set-up, where a free-falling target (i.e., a corner reflector) was correctly detected by an SFCW radar. This method was finally applied in field for short-range detection of a small UAV.


2019 ◽  
Vol 11 (10) ◽  
pp. 1237 ◽  
Author(s):  
Hyunjae Lee ◽  
Byung-Hyun Kim ◽  
Jin-Kwan Park ◽  
Jong-Gwan Yook

A novel non-contact vital-sign sensing algorithm for use in cases of multiple subjects is proposed. The approach uses a 24 GHz frequency-modulated continuous-wave Doppler radar with the parametric spectral estimation method. Doppler processing and spectral estimation are concurrently implemented to detect vital signs from more than one subject, revealing excellent results. The parametric spectral estimation method is utilized to clearly identify multiple targets, making it possible to distinguish multiple targets located less than 40 cm apart, which is beyond the limit of the theoretical range resolution. Fourier transformation is used to extract phase information, and the result is combined with the spectral estimation result. To eliminate mutual interference, the range integration is performed when combining the range and phase information. By considering breathing and heartbeat periodicity, the proposed algorithm can accurately extract vital signs in real time by applying an auto-regressive algorithm. The capability of a contactless and unobtrusive vital sign measurement with a millimeter wave radar system has innumerable applications, such as remote patient monitoring, emergency surveillance, and personal health care.


2014 ◽  
Vol 56 (11) ◽  
pp. 2484-2489
Author(s):  
Tauseef Tauqeer ◽  
Maira Islam ◽  
A. K. Aziz

2016 ◽  
Vol 3 (1) ◽  
pp. 52-61 ◽  
Author(s):  
Deniss Brodņevs ◽  
Igors Smirnovs

Abstract This paper presents a natural experiment of the spectral processing of 4.3 GHz Frequency Modulated Continuous Wave Radar (FMCWR) converted signal. The FMCWR antennas are fixed above a smooth reflective surface. The converted signal spectrum is theoretically calculated and compared with the experimental data.


2016 ◽  
Vol 14 ◽  
pp. 39-46 ◽  
Author(s):  
Thomas J. Mittermaier ◽  
Uwe Siart ◽  
Thomas F. Eibert ◽  
Stefan Bonerz

Abstract. A tracking solution for collision avoidance in industrial machine tools based on short-range millimeter-wave radar Doppler observations is presented. At the core of the tracking algorithm there is an Extended Kalman Filter (EKF) that provides dynamic estimation and localization in real-time. The underlying sensor platform consists of several homodyne continuous wave (CW) radar modules. Based on In-phase-Quadrature (IQ) processing and down-conversion, they provide only Doppler shift information about the observed target. Localization with Doppler shift estimates is a nonlinear problem that needs to be linearized before the linear KF can be applied. The accuracy of state estimation depends highly on the introduced linearization errors, the initialization and the models that represent the true physics as well as the stochastic properties. The important issue of filter consistency is addressed and an initialization procedure based on data fitting and maximum likelihood estimation is suggested. Models for both, measurement and process noise are developed. Tracking results from typical three-dimensional courses of movement at short distances in front of a multi-sensor radar platform are presented.


Sign in / Sign up

Export Citation Format

Share Document