scholarly journals Frequency Modulated Continuous Wave Radar System at ISM Band for Short Range Indoor Positioning

2017 ◽  
Author(s):  
Yuxin Wang
Sensors ◽  
2019 ◽  
Vol 19 (6) ◽  
pp. 1331
Author(s):  
Massimiliano Pieraccini ◽  
Lapo Miccinesi ◽  
Neda Rojhani

Step-frequency continuous-wave (SFCW) modulation can have a role in the detection of small unmanned aerial vehicles (UAV) at short range (less than 1–2 km). In this paper, the theory of SFCW range detection is reviewed, and a specific method for correcting the possible range shift due to the Doppler effect is devised. The proposed method was tested in a controlled experimental set-up, where a free-falling target (i.e., a corner reflector) was correctly detected by an SFCW radar. This method was finally applied in field for short-range detection of a small UAV.


2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Sven Schellenberger ◽  
Kilin Shi ◽  
Tobias Steigleder ◽  
Anke Malessa ◽  
Fabian Michler ◽  
...  

Abstract Using Radar it is possible to measure vital signs through clothing or a mattress from the distance. This allows for a very comfortable way of continuous monitoring in hospitals or home environments. The dataset presented in this article consists of 24 h of synchronised data from a radar and a reference device. The implemented continuous wave radar system is based on the Six-Port technology and operates at 24 GHz in the ISM band. The reference device simultaneously measures electrocardiogram, impedance cardiogram and non-invasive continuous blood pressure. 30 healthy subjects were measured by physicians according to a predefined protocol. The radar was focused on the chest while the subjects were lying on a tilt table wired to the reference monitoring device. In this manner five scenarios were conducted, the majority of them aimed to trigger hemodynamics and the autonomic nervous system of the subjects. Using the database, algorithms for respiratory or cardiovascular analysis can be developed and a better understanding of the characteristics of the radar-recorded vital signs can be gained.


2013 ◽  
Vol 5 (3) ◽  
pp. 409-417 ◽  
Author(s):  
Jochen O. Schrattenecker ◽  
Andreas Haderer ◽  
Günther Reinthaler ◽  
Andreas Stelzer

In this paper, we present the results of using a frequency-stepped continuous-wave radar system to estimate the position of overlapping and electrically good conductive plates. We especially focus on polarimetric scattering effects caused by the step of a lap joint, which is a common welding-geometry. To model the step's contribution to the overall scattered signal, we use a two-dimensional combined field integral equation (CFIE) approach. For demonstrating its practical applicability, the implemented scattering model is verified by measurements. To emphasize the improvements of position estimation by using a CFIE approach, the outcomes of the model are compared to a commonly used point scattering model. Finally, the numerical signal is utilized to precisely estimate the position of the lap joint.


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Eugin Hyun ◽  
Young-Seok Jin ◽  
Jong-Hun Lee

We designed and developed a 24 GHz surveillance FMCW (Frequency Modulated Continuous Wave) radar with a software-reconfigurable baseband. The developed radar system consists of transceiver, two selectable transmit antennas, eight parallel receive antennas, and a back-end module for data logging and to control the transceiver. The architecture of the developed radar system can support various waveforms, gain control of receive amplifiers, and allow the selection of two transmit antennas. To do this, we implemented the transceiver using a frequency synthesizer device and a two-step VGA (Variable Gain Amplifier) along with switch-controlled transmit antennas. To support high speed implementation features along with good flexibility, we developed a back-end module based on a FPGA (Field Programmable Gate Array) with a parallel architecture for the real-time data logging of the beat signals received from a multichannel 24 GHz transceiver. To verify the feasibility of the developed radar system, signal processing algorithms were implemented on a host PC. All measurements were carried out in an anechoic chamber to extract a 3D range-Doppler-angle map and target detections. We expect that the developed software-reconfigurable radar system will be useful in various surveillance applications.


2010 ◽  
Vol 2010 ◽  
pp. 1-6 ◽  
Author(s):  
Wei Shen ◽  
Biyang Wen

An efficient demodulation method designed for FMCW (Frequency-Modulated Continuous Wave) radar is presented. It is a kind of modified DFT (IDFT) algorithm; the spectrum segment of interest can be easily extracted from the original signal without calculating the whole DFT/FFT. It provides fast demodulation and extraction of desired frequency bands in our HFSWR (High-Frequency Surface Wave Radar) system. The proposed approach enhances the performances of radar system and reduces the computing complexity. The new structure could also be inversely used for signal modulation. And also arbitrary sampling rate conversion could be achieved with the combination of forward and backward structure.


2019 ◽  
Vol 62 (3) ◽  
pp. 1315-1323
Author(s):  
Jisheng Tong ◽  
Yan Jin ◽  
Yongshun Ji ◽  
Xiaoshuang Jiao ◽  
Jiyu Guo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document